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1. Basic Definitions

The subject of integral equations was started from a study by Niels Henrick Abel in
the early 19th century in connection with the mechanics problem of calculating the
time a particle takes to slide under gravity down a given smooth curve, from any
point on the curve to its lower end. In his study Abel illustrated the elegance and
power of the fractional calculus.

After Abel the study of integral equations was continued thanks to eminent mathe-
maticians including V. Volterra, E.I. Fredholm, D. Hilbert, E. Schmidt, H.T. Davis
and F.G. Tricomi. Here we limit ourselves to consider a particular class referred to as
Abel-type equations, after having briefly recalled the basic classification of integral
equations, in which integration is with respect to a single real variable.

Usually the classification of integral equations centres on three basic characteristics
which together describe their overall structure.

(i) The historical descriptions Fredholm and Volterra are concerned with the inte-
gration interval. In a Fredholm equation the integral is over a finite interval with
fixed end-points; in Volterra equation the upper end-point is indefinite.

(ii) The kind of an equation refers to the location of the unknown function. First
kind equations have the unknown function present under the integral sign only;
second kind equations also have the unknown function outside the integral.

(iii) The adjective singular is sometimes used when the integration is improper, either
because the interval is infinite, or because the integrand is unbounded within the
given interval. Obviously an integral equation can be singular on both counts.

The unknown function will be denoted by u = u(t) . Every integral equation contains,
in addition to a known function f(t) called the free term, a function obtained from
u by integration and of the form

∫ b

a

K(t, τ)u(τ) dτ , or
∫ t

a

K(t, τ)u(τ) dτ , (a ≤ t ≤ b) ,

where K is called the kernel and is assumed known.

The Volterra/Fredholm equations of the first kind are

∫ t,b

a

K(t, τ) u(τ) dτ = f(t) , (a ≤ t ≤ b) , (1.1)

and the Volterra/Fredholm equations of second kind are

u(t) + λ

∫ t,b

a

K(t, τ)u(τ) dτ = f(t) , λ ∈ C , (a ≤ t ≤ b) . (1.2)
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The quantity λ appearing in (1.2) is a numerical parameter, generally complex. It
plays a crucial part in the theory of (1.2); in practical applications λ is usually
composed of physical quantities and cannot simply absorbed into the kernel.

We should also note that Fredholm equations reduce to those of Volterra type if their
kernels are defined to have the property that

K(t, τ) = 0 (a ≤ t ≤ τ ≤ b) . (1.3)

This relationship between the two varieties of equation is a useful one, but it is wrong
to infer that the differences between them are minimal.

A very important class of integral equations in Physics is represented by Volterra
equations of convolution type for which a = 0 and the kernel satisfies the condition

K(t, τ) = K(t− τ) . (1.4)

Consequently, the integral in (1.1-2) can be interpreted as a convolution between two
causal functions K(t) and u(t) in that

K(t) ∗ u(t) :=
∫ +∞

−∞
K(t− τ)u(τ) dτ =

∫ t

0

K(t− τ)u(τ) dτ , (1.5)

being u(t) = K(t) = 0 for t < 0 . In this case a suited method of solution is given by
the Laplace transform in that the transform of the convolution between two functions
turns out to be the product of the transformed functions. Adopting the following
notation

L[f(t)] :=
∫ ∞

0

e−st f(t) dt = f̃(s)÷ f(t) , s ∈ C ,

we write
L[K(t) ∗ u(t)] = K̃(s) ũ(s)÷K(t) ∗ u(t) . (1.6)

We define Abel type integral equations the Volterra equations of convolution type for
which the kernel turns out to be

K(t) =
1

Γ(α)
1

t1−α
, t > 0 , 0 < α < 1 . (1.7)

The constant factor related to the Gamma function is put for convenience in order
to identify the kernel with the causal power function

Φα(t) :=
tα−1
+

Γ(α)
, (1.8)

that for α > 0 we refer to as the (ordinary) Gel’fand-Shilov function.
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In (1.8) the suffix + is just denoting that the function is vanishing for t < 0 .
Being α > 0 , this function turns out to be locally absolutely integrable in IR+ . Let
us recall the noteworthy property of the (ordinary) Gel’fand-Shilov functions with
respect to the convolution, i.e.

Φα(t) ∗ Φβ(t) = Φα+β(t) , α , β > 0 . (1.9)

More generally the Abel type integral equations are defined by a so-called weakly
singular kernel

K(t, τ) =
K̂(t, τ)
|t− τ |γ , 0 < γ < 1 , (1.10)

where K̂ is a bounded function. Special consideration needs for the case γ = 1 in
(1.10), for which the kernel is termed strongly singular or Cauchy singular kernel and
the corresponding integral equations are called of Cauchy type.

2. Abel Integral Equations via Laplace Transform

Let us consider the Abel integral equation of the first kind

1
Γ(α)

∫ t

0

u(τ)
(t− τ)1−α

dτ = f(t) , 0 < α < 1 , (2.1)

and of the second kind

u(t) +
λ

Γ(α)

∫ t

0

u(τ)
(t− τ)1−α

dτ = f(t) , λ ∈ C , 0 < α < 1 . (2.2)

Let us solve the above equations making use of the Laplace transform recalling that

1
Γ(α)

∫ t

0

u(τ)
(t− τ)1−α

dτ = Φα(t) ∗ u(t) , Φα(t) :=
tα−1
+

Γ(α)
÷ 1

sα
, 0 < α < 1 . (2.3)

For the Abel equation of the first kind we obtain

ũ(s)
sα

= f̃(s) =⇒ ũ(s) = sα f̃(s) . (2.4)

Now we can choose two different ways to get the inverse Laplace transform from
(2.4), according to the standard rules. We recall that the Laplace transform of any
(ordinary) function must necessarily tend to 0 as Re {s} → +∞ . Writing (2.4) as

ũ(s) = s

[
f̃(s)
s1−α

]
, (2.4a)

we obtain

u(t) =
1

Γ(1− α)
d

dt

∫ t

0

f(τ)
(t− τ)α

dτ . (2.5a)
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If we write (2.4) as

ũ(s) =
1

s1−α
[s f̃(s)− f(0+)] +

f(0+)
s1−α

, (2.4b)

we obtain

u(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α

dτ + f(0+)
t−α

Γ(1− a)
. (2.5b)

The way b) requires that f(t) be differentiable with L-transformable derivative; con-
sequently 0 ≤ |f(0+)| < ∞ . Then it turns out from (2.5b) that u(0+) can be infinite
if f(0+) 6= 0 , being u(t) = O(t−α) . The way a) requires weaker conditions in that
the integral at the R.H.S. of (2.5a) must be vanishing as t → 0+; consequently f(0+)
could be infinite but with f(t) = O(t−ν) , 0 < ν < 1 − α (keeping in mind that
Φ1−α ∗ Φ1−ν = Φ2−α−ν). Then it turns out from (2.5a) that u(0+) can be infinite if
f(0+) is infinite, being u(t) = O(t−(α+ν)) .

For the Abel equation of the second kind we obtain[
1 +

λ

sα

]
ũ(s) = f̃(s) =⇒ ũ(s) =

sα

sα + λ
f̃(s) . (2.6)

Now let us introduce for t ≥ 0 the function eα(t;λ) so defined

eα(t; λ) := Eα(−λtα) ÷ sα−1

sα + λ
, λ ∈ C , (2.7)

where Eα denotes the Mittag-Leffler function of order α . We recall that the Mittag-
Leffler function is defined for any positive α in the whole complex plane as

Eα(z) :=
∞∑

n=0

zn

Γ(αn + 1)
, α > 0 , z ∈ C . (2.8)

As before, we can choose two different ways to get the inverse Laplace transform from
(2.6), according to the standard rules. Writing (2.6) as

ũ(s) = s

[
sα−1

sα + λ
f̃(s)

]
, (2.6a)

we obtain

u(t) =
d

dt

∫ t

0

eα(t− τ ; λ) f(τ) dτ . (2.9a)

If we write (2.6) as

ũ(s) =
sα−1

sα + λ
[s f̃(s)− f(0+)] + f(0+)

sα−1

sα + λ
, (2.6b)

we obtain

u(t) =
∫ t

0

eα(t− τ ; λ) f ′(τ) dτ + f(0+) eα(t; λ) . (2.9b)
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We also note that, being eα(t; λ) a function differentiable with respect to t with
eα(0+; λ) = Eα(0+) = 1 , it exists another possibility to re-write (2.6), namely

ũ(s) =
[
s

sα−1

sα + λ
− 1

]
f̃(s) + f̃(s) . (2.9c)

Then we obtain

u(t) =
∫ t

0

e′α(t− τ ; λ) f(τ) dτ + f(t) . (2.8c)

We recognize that the way b) is more restrictive than the ways a) and c) since it
requires that f(t) be differentiable with L-transformable derivative.

We conclude this section with some properties of the Mittag-Leffler type function
eα(t; λ) for 0 < α < 1. First of all one notes the explicit expression in terms of
the complementary error function that our function assumes in the particular case
α = 1/2 , for any λ ∈ C . In fact one can easily check that

e1/2(t; λ) := E1/2(−λ
√

t) = e λ2 t erfc(λ
√

t) ÷ 1
s1/2 (s1/2 + λ)

, λ ∈ C . (2.10)

Furthermore, iff λ > 0 , our function eα(t; λ) turns out to be completely monotone
for t > 0 , with certain power-law behaviours as t → 0+ and t → +∞ , corresponding
to an initial faster decay and a final slower decay with respect to the exponential
decay of e−λt , which is obtained in the limiting case α = 1 . In fact, for λ > 0 one
can prove

eα(t; λ) :=
∫ ∞

0

e−rt Kα(r; λ) dr ∼





1− λ
tα

Γ(α + 1)
as t → 0+ ,

1
λ

t−α

Γ(1− α)
as t → +∞ ,

(2.11)

with spectral function

Kα(r; λ) =
1
π

λ rα−1 sin (απ)
r2α + 2 λ rα cos (απ) + λ2

≥ 0 . (2.12)

In order to get some insight from the formulas (2.10-12) we find it useful to provide
the reader with some instructive plots. For convenience we put λ = 1 and denote
eα(t) = eα(t; 1) , K α(r) = Kα(r; 1) .

In Fig. 2.1 we compare the plot of e1/2(t) (continuous line) with those of its asymp-
totic expressions for small and large t (dashed linen) and with the plot of e1(t) = e−t

(dotted line). In Fig. 2.2 we compare the plots of eα(t) for some values of α,in the
interval 0 < α ≤ 1 ,, namely α = 0.25 , 0.50 , 0.75 , 1 . In Fig. 2.3 we compare the
plots of the spectral function Kα(r) for some values of α in the interval 0 < α < 1 ,,
namely α = 0.25 , 0.50 , 0.75 , 0.90 .
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Fig. 2.1 – The Mittag-Leffler function of order α = 1/2 compared with
its asymptotic representations (dashed lines) and the exponential (dotted line).
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Fig. 2.2 – Plots of the Mittag-Leffler function eα(t) = Eα(−tα) for some values of α ∈ (0, 1).
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Fig. 2.3 – Plots of the spectral function Kα(r) for some values of α ∈ (0, 1).
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3. Abel Integral Equations via Fractional Calculus

After having solved the Abel equations by the standard technique of the Laplace
transform, let us now interpret both the equations and their respective solutions in
terms of Riemann-Liouville fractional calculus, which leads to a succinctness of nota-
tion and simplicity of formulation. We point out that, originally, Abel (1823, 1826)
was able to solve his equation (2.1) by the tools of a primitive fractional calculus,
before Liouville (1832, 1834, 1855, 1873) and Riemann (1847) put the basis of such
a calculus, so named in their honour.

Let us first recall the basic definitions of fractional integral Jα and fractional deriva-
tive Dα of any order α > 0 for a causal function f(t) . For more details we refer the
reader to the author’s lecture notes entitled An Introduction to Fractional Calculus
and to the references there quoted.

We define the fractional integral of order α > 0 :

Jα f(t) := Φα(t) ∗ f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1 f(τ) dτ , t > 0 , α ∈ IR+ . (3.1)

For complementation we define J0 := I (Identity operator), i.e. we mean J0 f(t) =
f(t) . We note that for α = n ∈ IN the above definition reduces to the well known
formula (usually attributed to Cauchy), that provides the n−fold primitive fn(t) ,
(vanishing at t = 0 with its derivatives of order 1, 2, . . . , n − 1) in terms a single
integral of convolution type.

As the derivative of order n ,Dn , turns out to be left inverse to the integral of order
n , Jn , namely Dn Jn = I , so we expect that Dα is defined as left-inverse to Jα. For
this purpose, introducing the positive integer m such that m− 1 < α ≤ m , we define
the fractional derivative of order α > 0 :

Dα f(t) := Dm Jm−α f(t) =
dm

dtm

[
1

Γ(m− α)

∫ t

0

f(τ)
(t− τ)α+1−m

dτ

]
,

t > 0 , m− 1 < α ≤ m, m ∈ IN .

(3.2)

Using the semigroup property of the fractional integrals, i.e.

Jα Jβ = Jα+β , α , β ≥ 0 , (3.3)

it is easy to verify that Dα Jα = I . In fact, Dα Jα = Dm Jm−α Jα = Dm Jm = I .
We recall that in general Jα Dα 6= I , as it occurs for the ordinary differentiation and
integration operators.

It is useful to have in mind the effect of our operators Jα and Dα on the power
functions tγ with γ > −1, t > 0. We have, for α ≥ 0 , the relations

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tγ+α , Dαtγ =

Γ(γ + 1)
Γ(γ + 1− α)

tγ−α , t > 0 , γ > −1 . (3.4)
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It is now easy to recognize that the Abel equation of the first kind (2.1) can be written
as

Jα u(t) = f(t) . (3.5)

Consequently, applying the operator Dα , we obtain the solution as

u(t) = Dα f(t) , (3.6)

which is equivalent to (2.5a), if we put m = 1 in (3.2).

Let us now consider the Abel equation of the second kind (2.2). In terms of the
fractional integral operator such equation reads

(1 + λJα) u(t) = f(t) , (3.7)

and, consequently, can be formally solved as follows

u(t) = (1 + λJα)−1
f(t) =

(
1 +

∞∑
n=1

(−λ)n Jαn

)
f(t) . (3.8)

Noting by (3.1) that

Jαn f(t) = Φαn(t) ∗ f(t) =
tαn−1
+

Γ(αn)
∗ f(t) ,

the formal solution reads

u(t) = f(t) +

( ∞∑
n=1

(−λ)n tαn−1
+

Γ(αn)

)
∗ f(t) . (3.9)

Recalling from the previous section the definition of the Mittag-Leffler type function,

eα(t;λ) := Eα(−λ tα) =
∞∑

n=0

(−λ tα)n

Γ(αn + 1)
, t > 0 , α > 0 , λ ∈ C , (3.10)

we note that
∞∑

n=1

(−λ)n tαn−1
+

Γ(αn)
=

d

dt
Eα(−λtα) = e′α(t; λ) , t > 0 . (3.11)

Finally, from (3.9-11) the solution reads in the form (2.8c).

Of course the above formal proof, based on the series development of the operator
(1 + λJα)−1 , can be made rigorous.
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4. Inverse Problems for Heat Conduction

A field in which Abel integral equations or integral equations with more general
weakly singular kernels are important is that of inverse boundary value problems
in partial differential equations, in particular parabolic ones in which naturally the
independent variable has the meaning of time. We are going to describe in detail
the occurrence of Abel integral equations of first and of second kind in the problem
of heating (or cooling) of a semi-infinite rod by influx (or efflux) of heat across the
boundary into (or from) its interior.

Consider the equation of heat flow

ut − uxx = 0 , u = u(x, t) , x > 0 , t > 0 . (4.1)

In this dimensionless equation u = u(x, t) means temperature. Assume vanishing
initial temperature, i.e. u(x, 0) = 0 for x > 0 and given influx across the boundary
x = 0 from x < 0 to x > 0 ,

−ux(0, t) = p(t) . (4.2)
Then, under appropriate regularity conditions, u(x, t) can be shown to be given by
the formula

u(x, t) =
1√
π

∫ t

0

p(τ)√
t− τ

e−x2/[4(t− τ)] dτ , x > 0 , t > 0 . (4.3)

We turn our special interest to the interior boundary temperature φ(t) := u(0+, t) ,
t > 0 , which by (4.3) is represented as

φ(t) =
1√
π

∫ t

0

p(τ)√
t− τ

dτ = J1/2 p(t) , t > 0 . (4.4)

We recognize (4.4) as an Abel integral equation of first kind for determination of an
unknown influx p(t) if the interior boundary temperature φ(t) is given by measure-
ments, or intended to be achieved by controlling the influx. Its solution is therefore
given by

p(t) = D1/2 φ(t) =
1√
π

d

dt

∫ t

0

φ(τ)√
t− τ

dτ , (4.5)

where we have used the formula (3.2) for the fractional derivative with m = 1 and
α = 1/2 .

It may be illuminating to consider the following special cases,

(i) φ(t) = t =⇒ p(t) =
1
2

√
π t , (ii) φ(t) = 1 =⇒ p(t) =

1√
π t

, (4.6)

where we have used the formula in (3.4) for the fractional derivative of tγ with γ = 1
and γ = 0 . So, for linear increase of interior boundary temperature the required
influx is continuous and increasing from 0 towards ∞ (with unbounded derivative at
t = 0+), whereas for instantaneous jump-like increase from 0 to 1 the required influx
decreases from ∞ at t = 0+ to 0 as t →∞ .
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We now modify our problem to obtain an Abel integral equation of second kind.
Assume that the rod x > 0 is bordered at x = 0 by a bath of liquid in x < 0 with
controlled exterior boundary temperature u(0−, t) := ψ(t) .

Assuming Newton’s radiation law we have an influx of heat from 0− to 0+ propor-
tional to the difference of exterior and interior temperature,

p(t) = λ [ψ(t)− φ(t)] , λ > 0 . (4.7)

Inserting (4.7) into (4.4) we obtain

φ(t) =
λ√
π

∫ t

0

ψ(τ)− φ(τ)√
t− τ

dτ ,

namely, in operator notation,

(
1 + λJ1/2

)
φ(t) = λJ1/2 ψ(t) . (4.8)

If we now assume the exterior boundary temperature ψ(t) as given and the evolution
in time of the interior boundary temperature φ(t) as unknown, then (4.23) is an Abel
integral equation of second kind for determination of φ(t) .

With α = 1/2 the equation (4.8) is of the form (3.7), and by (3.8) its solution is

φ(t) = λ
(
1 + λJ1/2

)−1

J1/2 ψ(t) = −
∞∑

m=0

(−λ)m+1 J (m+1)/2 ψ(t) . (4.9)

Let us investigate the very special case of constant exterior boundary temperature,

ψ(t) = 1 . (4.10)

Then, by using the formula in (3.4) for the fractional integral of tγ with γ = 0 , we
obtain

J (m+1)/2 ψ(t) =
t(m+1)/2

Γ [(m + 1)/2 + 1]
,

hence

φ(t) = −
∞∑

m=0

(−λ)m+1 t(m+1)/2

Γ [(m + 1)/2 + 1]
= 1−

∞∑
n=0

(−λ)n tn/2

Γ (n/2 + 1)
,

so that

φ(t) = 1− E1/2

(
−λt1/2

)
= 1− e1/2(t;λ) . (4.11)

Observe that φ(t) is a creep function, increasing strictly monotonically from 0 towards
1 as t runs from 0 to ∞ .
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5. The Tautochrone Problem

Niels Henrik ABEL was led to his famous equation by the mechanical problem of
the TAUTOCHRONE, that is, by the problem of determining a curve in the vertical
plane, such that the time required for a particle to slide down the curve (without
friction) to its lowest point is equal to a given function of its initial height. As a
special case Abel discussed the problem of the ISOCHRONE, in which it is required
that the time of sliding down is independent of the initial height.

Let us fix the lowest point of the curve at the origin and position the curve in the
positive quadrant of the plane, denoting by (X, Y ) the initial point and (x, y) any
point intermediate between (0, 0) and (X, Y ) , see Fig. 5.1.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

(X,Y)

(x,y)

Fig. 5.1 The coordinate system for the tautochrone.

Assuming no frictional loses, we obtain from the conservation of energy

m

2

(
ds

dt

)2

= mg (Y − y) , (5.1)

where s is the arc length along the curve measured from the origin, m is the mass of
the particle, g the gravitational acceleration, and t the time. Thus, since ds/dt < 0 ,

ds = −
√

2g (Y − y) = −|v| dt , (5.2)

where v denotes the scalar velocity. Then, the total time of descent can be computed
by the following integral

T = T (Y ) =
∫ s(Y )

0

ds

|v| , (5.3)

if we write s = s[y(t)] to indicate the dependence of s on the height y (which itself
depends on time). We thus obtain

T (Y ) =
1√
2g

∫ Y

0

(ds/dy)√
Y − y

dy . (5.4)
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Putting provisionally

u(y) =
ds

dy
, f(y) =

√
2g

π
T (y) , (5.5)

we can re-write (5.4) in terms of fractional calculus, i.e.

1
Γ(1/2)

∫ Y

0

u(y)√
Y − y

dy = J1/2 u(Y ) = f(Y ) . (5.6)

The solution is therefore

u(Y ) = D1/2 [f (Y )] =
1

Γ(1/2)
d

dY

∫ Y

0

f(y)√
Y − y

dy . (5.7)

Now, using (5.5) and (5.7), we can express s(Y ) in terms of T (Y ) through the fol-
lowing integral relation, which provides the solution of the original problem

s(Y ) =
√

2g

π

∫ Y

0

T (y)√
Y − y

dy . (5.8)

Let us now consider two noteworthy particular cases of T (y) provided by the problems
of the free fall and of the isochrone, respectively.

For the problem of the free fall it is y = g [T (y)]2/2 , and therefore

T (y) =
√

2y

g
=⇒ s(Y ) =

2
π

∫ Y

0

√
y√

Y − y
dy = Y , (5.9)

as expected. The result can be obtained by putting y = Y sin2 φ , 0 ≤ φ ≤ π/2 .

For the problem of the isochrone it is easy to show

T (y) = T = const =⇒ s(Y ) =
√

2g T

π

∫ Y

0

dy√
Y − y

= 2
√

2R Y 1/2 , (5.10)

where we have put

R = g
T 2

π2
. (5.11)

Let us show that the isochrone turns out to be the cycloid generated by a circle of
radius R , which rolls without slipping under the line y = 2R .
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For a resumé on the cycloid we refer to Appendix 1. Following the notation of the
Appendix the parametric equations of the cycloid turn out to be

s = s(θ) = 4R sin θ/2 ⇐⇒
{

x = R (θ + sin θ)

y = R (1− cos θ)
− π ≤ θ ≤ +π , (5.12)

where θ is the rotation angle. The cycloid requires that the angle ψ between the
tangent to the curve and the positive x-axis be one half of the rotation angle θ , i.e.

tg ψ =
dy

dx
, ψ =

θ

2
. (5.13)

Consequently the parametric equations of the cycloid can be expressed in terms of
the angle ψ as follows

s = s(ψ) = 4R sin ψ ⇐⇒
{

x = R (2ψ + sin 2 ψ)

y = 2R sin2 ψ
− π/2 ≤ ψ ≤ +π/2 . (5.14)

In order to prove that the isochrone is just the above cycloid we must show that

s(y) = 2
√

2R y1/2 , (ds/dy) =
√

2R y−1/2 , (5.15)

derived from (5.10), lead to the equations in (5.14). While the equations for s = s(ψ)
and y = y(ψ) are easily verified, that for x(ψ) requires some computations. In fact
from (dx)2 + (dy)2 = (ds)2 , u(y) = ds/dy and y = 2R sin2 ψ , we have

x =
∫ √

u2(y)− 1 dy =
∫ √

2R/y − 1 dy = 4R

∫ √
1/ sin2 ψ − 1 sin ψ cos ψ dψ

= 4R

∫
cos2 ψ dψ = 2R

∫
(1 + cos 2ψ) dψ = R (2ψ + sin 2ψ) .

Now we are in position to compute the (constant) period of a cycloidal pendulum,
formerly derived by Huygens (1673). In fact, multiplying by four the descent time in
(5.11) in order to allow a complete oscillation, we obtain

TH = 4T = 2π

√
4R

g
. (5.16)

It is instructive to compare this period with that of the ordinary circular pendulum
(of length L) for small oscillations, formerly derived by Galileo (1581),

TG ≈ 2π

√
L

g
. (5.17)

In order to get the identity between the two periods we must take L = 4R and assume
sin α ≈ α , as described in Appendix 2, where the equations of motion for both the
cycloidal pendulum and the circular pendulum are derived.






