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A mathematical model, of general character for the dynamic description
of coupled neural oscillators is presented. The population approach that
is employed applies equally to coupled cells as to populations of such
coupled cells. The formulation includes stochasticity and preserves de-
tails of precisely firing neurons. Based on the generally accepted view
of cortical wiring, this formulation is applied to the retinal ganglion cell
(RGC)/lateral geniculate nucleus (LGN) relay cell system, of the early
mammalian visual system. The smallness of quantal voltage jumps at
the retinal level permits a Fokker-Planck approximation for the RGC
contribution; however, the LGN description requires the use of finite
jumps, which for fast synaptic dynamics appears as finite jumps in the
membrane potential.

Analyses of equilibrium spiking behavior for both the deterministic
and stochastic cases are presented. Green’s function methods form the
basis for the asymptotic and exact results that are presented. This deter-
mines the spiking ratio (i.e., the number of RGC arrivals per LGN spike),
which is the reciprocal of the transfer ratio, under wide circumstances.
Criteria for spiking regimes, in terms of the relatively few parameters of
the model, are presented.

Under reasonable hypotheses, it is shown that the transfer ratio is ≤1/2,
in the absence of input from other areas. Thus, the model suggests that
the LGN/RGC system may be a relatively unsophisticated spike editor.
In the absence of other input, the system is designed to fire an LGN
spike only when two or more RGC spikes appear in a relatively short
time. Transfer ratios that briefly exceed 1/2 (but are less than 1) have been
recorded in the laboratory. Inclusion of brain stem input has been shown
to provide a signal that elevates the transfer ratio (Ozaki & Kaplan, 2006).
A model that includes this contribution is also presented.

1 Introduction

A convenient hypothesis in modeling neural activity is that neuron popula-
tions that perform separate tasks interact through their firing rates. This is
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a reasonable assumption in the common circumstance when large numbers
of presynaptic neurons converge on the postsynaptic neuron and bring it
to discharge. The mean field approximation of Wilson and Cowan (1973)
adopts this hypothesis, and a highly refined dynamic form of this appears in
the recent population formulations of Knight, Manin, and Sirovich (1996),
Knight (2000), and Omurtag, Knight, and Sirovich (2000). However, there
are important physiological exceptions to the premise of this scenario, and
an example of this is the retinal/lateral geniculate nucleus (LGN) system of
the mammalian visual system. In this case, there is ample evidence that pre-
cise firing takes place, since as few as one retinal ganglion cell (RGC) may
drive one LGN relay cell. Compelling evidence for this “straight-through
pathway” appears in a series of pioneering investigations (Bishop, 1953;
Cleland, Dubin, & Levick, 1971a, 1971b; Levick, Cleland, & Dubin, 1972).
The literature on this topic (Usrey, Reppas, & Reid, 1999; Cleland et al.,
1971a, 1971b; Levick et al., 1972; Ruksenas, Fjeld, & Heggelund, 2000) shows
a range in the degree and quality of the RGC/LGN coupling, but there is
unanimity in the view that few retinal ganglion cells drive a LGN relay cell
and that this is efficiently accomplished. Here we adopt a general approach
to the description of such tightly coupled interacting populations and apply
the formulation to the description of the particular case of RGC/LGN cou-
pling. This will be accomplished within the framework of the population
approach that has been put forward in the references already cited.

The origin of the population approach adopted here can be traced to Stein
(1965) and the subsequent work by Wilbur and Rinzel (1982, 1983). In those
studies, the behavior of single neurons was considered in terms of probable
states and resulted in an analytical formulation for the description and
evolution of the probability density for single neuron firing. The usefulness
and scope of this approach was immensely extended by Knight et al. (1996),
Omurtag, Knight, et al. (2000), and Knight (2000). These papers show that
the description and evolution of a population of like neurons can be put into
the earlier framework. In addition, the theoretical construct was extended
to include interactions among the neurons of a population and further to
interactions among many populations of neurons. Additional features were
explored (Casti et al., 2002; Haskell, Nykamp, & Tranchina, 2001; Nykamp
& Tranchina, 2000; Sirovich, 2003; Sirovich, Omurtag, & Lubliner, 2006).
Related studies have fleshed out the wide variety of phenomena that are
contained in a general population approach (Fusi & Mattia, 1999; Mattia
& Del Giudice, 2002; Amit & Brunel, 1997; Gerstner, 1995; Gerstner, van
Hemmen, & Cowan, 1996). See Gerstner and Kistler (2002) for a review.

Some doubt has been expressed (Rieke, Warland, van Steveninck, &
Bialek, 1997; Usrey & Reid, 1999) in regard to the ability of rate equations to
accurately capture complex neuronal activity. In particular, the capacity of
rate equations to recruit neuronal synchrony and account for precise firing
has been questioned. The former qualm was dealt with for the population
formulation in Sirovich et al. (2006), where a wide range of synchronous
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behaviors was shown to exist (also see Lytton & Sejnowski, 1991; Ritz &
Sejnowski, 1997; Fusi & Mattia, 1999; Brunel & Hakim, 1999; Mattia &
Del Giudice, 2002). The study presented here convincingly demonstrates
that precise firing can be accurately treated within the framework of the
population approach.

2 Formulation

The LGN, a complex structure of the thalamus, is the gateway to many areas
of the visual cortex. Most input to the LGN, perhaps as much as 90%, arises
from nonretinal sources from higher areas (Sherman & Guillery, 1996). In
addition to the massive cortical feedback, collateral LGN neurons from
the thalamic reticular nucleus and local interneurons furnish inhibition
(Uhlrich, Cucchiaro, & Sherman, 1988). Additionally, the LGN receives in-
put from the brainstem via the parabrachial nucleus (PBN; Ozaki & Kaplan,
2006). By contrast with retinal input to LGN, which is highly specific, the
PBN input is globally distributed and appears to be relatively sparse, with
perhaps less than 2% of the synapses due to the brainstem (Cucchiaro,
Uhlrich, & Sherman, 1988).

Mumford (1991) has theorized that the widespread reciprocity and lo-
cal LGN circuitry is a dynamic information processing apparatus. It is
known that only retinal input elicits firing activity (Kaplan & Shapley, 1984).
Section 1 describes the compelling evidence that RGC is directly linked to
the LGN. It is also widely agreed that more than 50% of RGC spikes are
dropped by the relay cells (Bishop, 1953; Cleland et al., 1971a, 1971b; Levick
et al., 1972; Ruksenas et al., 2000; Sincich, Adams, Economides, & Horton,
2007; Andolina, Jones, Wang, & Sillito, 2007; Ozaki & Kaplan, 2006). As a
result, it has been opined that this editing feature of LGN relay cells is a
source of information processing.

With the exception of a brief later discussion of the PBN, we simplify
by restricting attention to the RGC/LGN system. A further simplification,
based on sound principles, is introduced by regarding retinal input to LGN
as arising from a composite RGC cell, thus avoiding the issue of how few
RGC drive an LGN cell. A longer-term goal is the enrichment of this model
by the addition of other populations (from LGN and higher areas) to the
workings of the basic model developed here.

According to Freed (2005) visual information at the retinal level is well
modeled by bipolar cells through glutamate quantal release to RGC; how-
ever, it is well known that horizontal and amacrine cells sandwich the
bipolar cells (Dowling, 1992). Quantal arrivals activate RGC currents that
are encoded as spikes (Fohlmeister & Miller, 1997; Koch et al., 2004; Freed,
2005). The time constant for leakage of current is 1 to 6 ms, more than an
order of magnitude smaller than interspike times (Freed, 2005). Therefore, it
is reasonable to replace RGC synaptic dynamics by delta function arrivals,
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which, in the framework of a simple integrate-and-fire model for the RGC
membrane potential, of u, yields

du
dt

= −γuu + hu

∑
k

δ(t − tk) = −γuu + Iu (2.1)

where γuu represents leakage current, {tk} denotes the synaptic arrival times,
and hu is the resulting membrane potential jump. Membrane potential, u,
has been normalized such that 0 ≤ u ≤ 1, with u = 0 representing the resting
state and u = 1 the threshold for firing, which resets u to zero when reached.
Consideration of slower synapses can be found in Haskell et al. (2001) and
Fourcaud and Brunel (2002).

The next stage in the visual pathway is the LGN. The preponderance of
input to the LGN is from sources other than the retina. RGC arrivals, which
can be recorded in the LGN as (slow) S-potentials, are a necessary but not
sufficient condition for LGN firing. The prevailing LGN input is largely from
higher cortical areas and thus represents feedback, which is thought to deal
with information transmission, by editing the RGC input (Uhlrich et al.,
1988; Uhlrich, Cucchiaro, Humphrey, & Sherman, 1991; Ozaki & Kaplan,
2006; Andolina et al., 2007)

We regard the retinal ganglion layer as the sole driver of an LGN cell and
again resort to an integrate-and-fire model, which for the LGN membrane
potential, v, is given by

dv

dt
= −γvv + Iv[t; u]. (2.2)

RGC input to the LGN is denoted by the functional Iv . The membrane
potential v, is also normalized so v = 0 is resting and v = 1 is the threshold,
which is reset to zero when reached. The leakage current is represented
by γvv. (We point out that in situations more general than the LGN, the v-
neuron receives its own external input and can feed back to the u-neuron.)

The leaky integrate-and-fire models, equations 2.1 and 2.2, represent
gross simplification of the richly complex models of retina (Freed, 2005;
Fohlmeister & Miller, 1997) and for LGN (McCormick & Huguenard, 1992).
Quite generally, the leaky integrate-and-fire model has been shown to
be a reliable and serviceable workhorse model for nerve spiking (Kistler,
Gerstner, & van Hemmen, 1997; Knight, 2000).

Equations 2.1 and 2.2 represent a coupled dynamical system of
equations. The inclusion of stochasticity into dynamics owes its origins
to Einstein (1905), Langevin (1906), and others (see Gardiner, 2005).
The treatment developed here is presented in this spirit. One variation
from the standard stochastic approach is that jumps are not regarded as
infinitesimal. This is appropriate since there is compelling evidence that
the modeled LGN relay cells experience voltage jumps that cannot be
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Figure 1: Basic (u, v) domain, a square, for the RGC/LGN system. Ju refers to
the flux at the upper threshold and K to the LGN firing rate. As explained in the
text, Jv vanishes at u = 0 and u = 1. An element of flux Ju(u = 1, v0) dv reappears
at u = 0, v0 + hv , and all the flux leaving the last subinterval, (1 − hv, 1) at u = 1,
which is the LGN firing rate, reappears at the origin. Thus, the total flux exiting
at u = 1 enters at u = 0.

regarded as small. It is also a noteworthy feature of the treatment here that
the u and v membrane potentials are fully coupled and that there is no
disregard of precise spiking times. Past concern about the ability of the
population approach to deal with precise spiking may have been based
on a scenario of populations coupled by their firing rates. This is not the
case in the investigation here, since we will deal with a single probability
density for two membrane voltages, for the RGC and LGN cells. Casti,
Hayot, Xiao, and Kaplan (in press) and Haskell et al. (2001) have already
dealt with neuron populations involving two state variables. In both cases,
the author’s interest was focused on synaptic dynamics, and in addition to
membrane potential, a conduction or a gating variable appears. While this
might eventually prove to be of importance, in the interest of simplicity,
we adopt the simplifying assumption of fast synaptics, so that jumps in
potential (instead of conductivity jumps) appear. A schematic of the unit
square in which the dynamics takes place is shown in Figure 1.

In brief, when a u-neuron lies in the last subinterval 1 − hu < u < 1,
a synaptic arrival drives the u-neuron to threshold, and it fires. For a
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population, the flux is denoted by Judv. The firing drives the v-neuron
from membrane potential v0 to v0 + hv . The (u, v)-system is then reset to
(0, v + h), unless v is in its last subinterval, 1 − hv < v < 1, in which case
there is an LGN firing and both neurons are reset at the origin.

We denote the probability of being in the state (u, v) at time t in a volume
element dudv by ρ(u, v, t)dudv. It then follows that the evolution of ρ is
governed by

∂ρ(u, v, t)
∂t

=− ∂

∂u
Ju − ∂

∂v
Jv + Ju(1, v − hv)δ(u)

+
∫ 1

1−hv

Ju(1, v′) dv′δ(u)δ(v). (2.3)

The fluxes are

Jv(u, v) = −γvvρ & Ju(u, v) = −γuuρ + σ (t)
∫ u

u−hu

ρ(u′, v, t) du′, (2.4)

where

σ (t) =
〈∑

i

δ(t − ti )

〉
ensemble

(2.5)

denotes the ensemble averaged synaptic arrival rate at the u-neuron (RGC).
(See the appendix for the detailed form of equation 2.3.) Both thresholds of
the unit square are absorbing boundaries:

ρ(1, v, t) = 0 = ρ(u, 1, t). (2.6)

Equation 2.3 specifies the evolution of probability, ρ, in terms of its ba-
sic fluxes, and further includes the statement that exiting flux at u = 1,
Ju(1, v)dv reappears at u = 0, jumped by hv , unless v belongs to the last
subinterval, (1 − hv), in which case the v-neurons fire with the net flux,

K =
∫ 1

1−hv

Ju(1, v) dv, (2.7)

so that K represents the LGN firing. As seen in equation 2.3 this appears as
a flux into the basic square domain at the origin. The derivation of equation
2.3 follows the single unit case (Omurtag, Knight, et al., 2000).

It follows from equation 2.6 that Jv(u, 0) = Jv(u, 1) = 0. The remaining
net entering flux appears in equation 2.3 as delta function contributions and
includes the LGN firing (see equation 2.7). This is exactly balanced by the
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exiting flux
∫ 1

0 Ju(1, v) dv, and the formal integration of equation 2.3 over
the unit square of Figure 1 yields

∂

∂t

∫ 1

o
du′

∫ 1

o
dv′ρ(u′, v′, t) = 0; (2.8)

conservation of probability is respected. As another check of equation 2.3,
we observe that the marginal distribution,

ρ1(u, t) =
∫ 1

0
dv′ρ(u, v′, t), (2.9)

satisfies

∂ρ1(u, t)
∂t

= ∂

∂u

{
(γuuρ1(u, t)) −

∫ u

u−hu

ρ1(u′, t) du′
}

+ σ (t)δ(u)
∫ 1

1−hu

ρ1(u′, t) du′, (2.10)

the one neuron population equation derived in Omurtag, Knight, et al.
(2000) and discussed in a variety of frameworks (Knight, Omurtag, &
Sirovich, 2000; Omurtag, Kaplan, Knight, & Sirovich, 2000; Sirovich, Knight,
& Omurtag, 2000; Sirovich, 2003; Sirovich et al., 2006).

The presence of delta functions in equation 2.3 at the boundaries u =
0 and v = 0 indicates population accumulations at such locations. Such
neurons are dislodged by synaptic arrivals at the arrival rate. In the course
of numerical simulations, the presence of delta functions can lead to some
inaccuracies. It therefore is of practical significance that the solution to
equation 2.3, on theoretical grounds, can be decomposed as follows,

ρ = A(v, t)δ(u) + B(u, t)δ(v) + C(t)δ(u)δ(v) + ρ̂(u, v, t), (2.11)

with ρ̂ free of delta function factors (Sirovich, 2003). As shown in the ap-
pendix, this results in a system of four coupled differential equations, so
that delta functions never need to be given a coarse grain approximation.

We reiterate our earlier remark that equation 2.3 is a consequence of
regarding equations 2.1 and 2.2, as a single unit, and represents a novel
form of stochastic dynamics. In the limit of small jumps, it subsumes the
common diffusion approximation for stochasticity, one aspect of which is
considered next.

Freed (2005) reports that the number of quantal arrivals needed to pro-
duce an RGC spike can vary over a wide range, depending on how natural
the stimulus is. In his model, these events occur asynchronously and are
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Figure 2: Extracellular (differentiating) record of S-potential/spike from an
LGN relay cell (Ozaki & Kaplan, 2006). Note that LGN spikes always coincide
with S-potentials.

modeled by Poisson arrivals. According to Freed, about 10 jumps, hu, are
needed for the RGC to reach threshold under normal conditions (under
extreme experimental conditions, this number increases by more than an
order of magnitude). From this, it follows that we can reasonably regard hu

as small enough to adopt the diffusion approximation, although at hu = 0.1
this may be a concern.

By contrast, as explained in section 1, the LGN cell receives a highly syn-
chronized assembly of arrivals, possibly from as few as one RGC, resulting
in a substantial voltage jump, known as an S potential (see Usrey et al., 1999,
for a review). This is illustrated in Figure 2, and from this we might suppose
hv > 1

2 , although on a cautionary note, it should be noted that Figure 2 is an
extracellular recording. The strong coupling of retinal ganglion and relay
cells is underlined by this figure.

2.1 RGC/LGN System. From the above discussion it appears appropri-
ate that we consider equations 2.10 and 2.11 for hu ≈ 0 and hv = h bounded
away from zero. When this is done, it is found that A and C in equation
2.11 can be taken as zero, so that

ρ = B(u, t)δ(v) + ρ̂(u, v, t), (2.12)

and if current is defined as

s = huσ (2.13)
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and diffusivity as

µ = 1
2

shu, (2.14)

then expanding under the integral through order h2
u yields

∂

∂t
B(u, t) = ∂

∂u

{
(γuu − s)B + µ

∂ B
∂u

}
(2.15)

and

∂

∂t
ρ̂(u, v, t) = ∂

∂u

{
(γuu − s)ρ̂ + µ

∂

∂u
ρ̂

}
+ ∂

∂v
(γvvρ̂). (2.16)

The flux Ju, equation 2.4, to this approximation becomes

Ju =
{

(s − γuu)B − µ
∂ B
∂u

}
δ(v) +

{
(s − γuu)ρ̂ − µ

∂ρ̂

∂u

}
, (2.17)

and the absorbing boundary conditions, equation, 2.6 are consistent with

B(1, t) = 0; ρ̂(1, v, t) = 0 = ρ̂(u, 1, t). (2.18)

As hu has exited the problem at this point we will drop the subscript from
hv . There is no current source for ρ̂ when v < 0, whence ρ̂(u, v < 0) = 0, and
the flux boundary condition becomes

Ju(0, v) =−µ

∫ 1

1−h

∂ρ̂

∂u
(1, v′) dv′δ(v)

−
{
µ

∂ B
∂u

(1, t)δ(v − h) + µ
∂ρ̂

∂u
(1, v − h, t)

}
, (2.19)

where the bracketed term is valid for v ≥ h. It should be noted that the
coefficient of δ(v) in equation 2.19 is K , the firing rate of the LGN relay
cell (see Figure 1), and thus it is the input boundary condition at u = 0 for
equation 2.15, while the remaining condition is given by the first term in
equation 2.18.

It is easily seen that the integral of equation 2.12 over the domain 0 ≤
u, v ≤ 1 is conserved and that the marginal distribution

ρ1(u, t) = B(u, t) +
∫ 1

0
dv′ρ̂(u, v′, t) (2.20)
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satisfies

∂

∂t
ρ1(u, t) = ∂

∂u

{
(γuu − s)ρ1 + µ

∂ρ1

∂u

}
. (2.21)

Thus, the marginal distribution ρ1(u, t) satisfies the same equation, 2.15,
as B(u, t). To contrast the two cases, we observe that the B(u, t) equation
is driven by the v-neuron firing rate, while the ρ1(u, t) equation is driven
essentially by external current.

3 Deterministic Case

For conceptual reasons and for later analysis, it is useful to first consider
the nonstochastic case. The ensemble averaged form of equation 2.1 is

du
dt

= −γ u + s, (3.1)

where for present purposes, we take s to be a constant current. If {τ j } denote
the firing times of equation 3.1, then

dv

dt
= −γ v + h

∑
j

δ(t − τ j ) (3.2)

describes the behavior of the v-neuron. Note that we have taken γu = γv = γ ,
which is attractive for reasons of exposition since trajectories of equations
3.1 and 3.2 are straight lines in the (u, v)-plane. (An estimate for the retinal
leakage time, γ −1

u , is 50 msec (Fohlmeister & Miller, 1997) and for the relay
cell leakage time γ −1

v it is 10 msec (Ozaki & Kaplan, 2006).) To see this, it is
sufficient to consider

du
dv

= s/γ − u
v

, (3.3)

which has the linear solution

s/γ − u
s/γ − u0

= v

v0
, (3.4)

where(u0, v0) are the initial conditions. (For γu �= γv , the trajectories follow
a power law.)

We restrict attention to s/γ > 1; otherwise, the deterministic u-neuron
does not fire. The details of the dynamics 3.1 and 3.2 are revealed by con-
sidering the reset state (u0, v0) = (0, 0) as the initial state.
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Figure 3: Heavy lines C1 and C2 depict sh/γ > 1. C1, C2 and their connecting
lines form a limit cycle. For s ′h/γ < 1, C∞ is a limit cycle.

The system point for the two-neuron system makes a sequence of pas-
sages from the bottom to the top of the square, as shown in Figure 3. We call
its coordinate at the nth exit (at u = 1) v̄n, and its immediate reappearance
(at u = 0) vn+1 = v̄n + h. Thus, reference abscissa values carry an overbar
(v̄) at u = 1 and an underbar (v) at u = 0.

It is clear from equation 3.4 (or equations 3.1 and 3.2) that all trajectories
would terminate in (s/γ, 0) in the absence of the threshold condition at
u = 1. Starting at u = 0 and v0 = 0, the trajectory ascends the u axis, and
reaches u = 1, at v̄0 = 0 indicated in Figure 3 by the heavy line C1, then
jumps to v1 = h, u = 0, and then proceeds along the heavy line C2 to v̄1 =
αh, at u = 1, where

α = s/γ − 1
s/γ

= 1 − γ

s
. (3.5)

In general

v̄ j = Tv j = αv j , (3.6)
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where T is the transformation dictated by similar triangles in Figure 3, and

v j+1 = Th v̄ j = v̄ j + h, (3.7)

where Th is the translation, by h, operator. If these transformations are
applied to the seed (0, 0), this yields

v j = h
j−1∑
k=0

αk = h
1 − α j

1 − α
, j ≥ 1 (3.8)

with the crossing points at u = 1 given by

v̄ j = αh
j−1∑
k=0

αk = αh
1 − α j

1 − α
, j ≥ 1. (3.9)

In the infinite limit, equation 3.9 yields

v∞ = sh
γ

(3.10)

and

v̄∞ = αv∞ = h
(

s
γ

− 1
)

, (3.11)

which confirms Th v̄∞ = v∞. It is clear that the LGN neuron will not fire
unless sh/γ > 1 and that the LGN cell is silent for

sh
γ

< 1. (3.12)

Both cases are depicted in Figure 3. Under condition 3.12, the LGN does not
fire, and only the limiting case is shown, in which case the RGC fires at the
frequency

ν = −γ / ln(1 − γ /s), (3.13)

obtained by integrating equation 3.1 to u = 1. In fact, for this case, equation
3.12, the trajectory C∞ is a limit cycle of the system, taking a time 1/ν to go
from v∞ to v̄∞ and zero time to return to v∞.

To see that C∞ is attracting, observe that from equation 3.12,

1 − γ /s < 1 − h, (3.14)
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and therefore the extreme case of a seed at (u, v) = (0, 1) passes to the left of
1 − h at u = 1, and after N steps, it is at vN = h(1 + α + α2 + · · · + αN) + αN,
which clearly tends to v∞ for N ↑ ∞.

If

sh
γ

> 1 (3.15)

v∞, equation 3.10, is greater than unity; hence, the v-cell fires in a finite
number of steps. For the case shown in Figure 3, the v-cell fires at the
second step, and C1 and C2 also constitute a limit cycle.

The ratio of LGN firing to RGC arrivals is known in the physiological
literature as the transfer ratio (Ruksenas et al., 2000; Ozaki & Kaplan, 2006).
It is also convenient to consider the reciprocal of the transfer ratio, which
informs us of the number of RGC arrivals, and hence the number of jumps,
h, required to yield an LGN firing. We will refer to this as the spiking ratio.
The first firing always occurs at (u, v) = (1, 0). At the next exit, the potential
is v̄1, and if v1 ≥ 1 − h the spiking ratio is 2, and at the nth firing brings the
potential to

v̄n = αn−1v̄1 + h
(

1 − αn

1 − α

)
− h. (3.16)

For latter purposes, we leave v̄1 open, but if v̄1 = αh, we recover equation
3.9. Since the condition for firing is that v̄n = 1 − h, we obtain

n(v̄1) = ln
(

1 − γ /sh
1 − v̄1/(h(s/γ − 1))

)/
ln(1 − γ /s), (3.17)

for the number of jumps to firing. In the present context, only integer values
make sense, and it is understood that n(v̄1) should be rounded up (see Figure
7). Thus, if h > 1/2, we can have n = 2, and the LGN cell can fire at the same
rate as the RGC only if h ≥ 1.

A case of interest, to be considered in more detail, is

h > 1/2.

In this case, if

s
γ

> h/(2h − 1), (3.18)

the v-cell fires after every second u-cell arrival, the transfer ratio is 1/2, and
this is roughly what might be seen in the laboratory (see Figure 2; Ozaki &
Kaplan, 2006).
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4 Equilibrium Solution

In the case of equilibrium, ∂/∂t = 0, equation 2.16, becomes

∂

∂u

{
(γ u − s)ρ̂ + µ

∂

∂u
ρ̂

}
+ ∂

∂v
(γ vρ̂) = 0, (4.1)

and the marginal distribution, equation 2.20, satisfies

∂

∂u

{
(γ u − s)ρ1 + µ

∂ρ1

∂u

}
= 0, (4.2)

so that RGC flux is conserved. Thus,

(γ u − s)ρ1 + µ
∂ρ1

∂u
= −Jo, (4.3)

where the constant Jo is the firing rate of the RGC population per unit
neuron. The equilibrium form of equation 2.15 has the similar first integral,

(γ u − s)B + µ
∂ B
∂u

= −K , (4.4)

again indicating a conservation of flux, where K is the firing rate of the LGN
relay cell population. Both equations 4.3 and 4.4 may be explicitly solved in
terms of quadratures (see equation 5.2), and we denote the solution, equa-
tion 4.4, by B(u, K ) and therefore ρ1 = B(u, Jo) is the solution to equation
4.3. The marginal distribution satisfies

∫ 1

0

∫ 1

0
dudvρ(u, v) =

∫ 1

0
duρ1(u) du = 1, (4.5)

and with ρ1 = B(u, Jo) on hand from equation 4.3, this leads to the determi-
nation of Jo = Jo(s, γ ) (see Figure 4 and equation 5.7 below). On the other
hand, in general B(u, K ) does not satisfy an a priori normalization condi-
tion, and the full problem must be considered before K can be determined.

In addition to the absorbing boundary conditions, B(1) = 0 & ρ̂(1, v) =
ρ̂(u, 1) = 0, we have the flux conditions, equation 2.19,

s B(0) − µ
∂ B
∂u

(0) = −µ

∫ 1

1−h

∂ρ̂

∂u
(1, v′) dv′ = K . (4.6)
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and

sρ̂(0, v) − µ
∂ρ̂

∂u
(0, v) =




0; 0 ≤ v < h

−µ
∂ B
∂u

(1, t)δ(v − h) − µ
∂ρ̂

∂u
(1, v − h); v ≥ h

(4.7)

which couples equations 4.1 and 4.4.

4.1 Small Diffusion: µ ↓ 0. To obtain an analytical grip on the analysis,
we pursue the µ ↓ 0 limit, which was justified by earlier remarks. From
equation 4.6, it then follows that

B(0) ≈ K
s

, (4.8)

and to lowest order, the formal outer solution of equation 4.4, µ = 0, is

B = K
s − γ u

. (4.9)

In the neighborhood of u = 1, there is a boundary layer of O(µ), and a
uniform solution to the boundary layer approximation of equation 4.4 is for
s > γ ,

B(u : K ) = K
s − γ u

(
1 − e−(s−γ )(1−u)/µ)

. (4.10)

Thus, for (1 − u)/µ fixed and µ ↓ 0, we get the boundary layer solution, and
for u fixed and µ ↓ 0, we get the outer solution, equation 4.9. By the same
token, the solution for ρ1 is B(u : J0). From the normalization condition,
equation 4.5, applied to the latter, we obtain

J0 = ν

(
1 − µν

(s − γ )2

)−1

, (4.11)

where ν is given by equation 3.13. Thus, the presence of the boundary
layer in effect reduces the firing threshold, so that the firing rate is slightly
increased.

The determination of ρ̂ from equation 4.1 follows in a similar fashion. If
µ = 0 in equation 4.1, we see that the (sub)characteristics (Cole, 1968) are
just the trajectories of the deterministic case considered in section 3. For
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initial data ρ̂0(v) at u = 0, and v ≥ h, the outer solution, µ = 0, to equation
4.1 is

ρ̂(u, v) = ρ̂0(v/(1 − γ u/s)
(1 − γ u/s)2 , (4.12)

which since ρ̂ must vanish at u = 1, requires a boundary layer, of O(µ), for
u ≈ 1. Proceeding as above, we obtain the uniformly valid solution,

ρ̂(u, v) ≈ ρ̂0(v/(1 − γ u/s)
(1 − γ u/s)

(
1 − e−(s−γ )(1−u)/µ

)
(s − γ u)

. (4.13)

To implement these considerations, we consider the case depicted in Figure
3: when h > 1/2. If sh/γ > 1 is sufficiently large, the trajectory is the limit
cycle made up of C1 and C2 shown in the Figure 3. From equation 4.7, the
initial condition is

ρ̂(0, v) = −µ

s
∂ B(1 : K )

∂u
δ(v − h) = K

s
δ(v − h) (4.14)

since µ∂ρ̂(0, v)/∂u is negligible. Hence, from equation 4.13, the uniformly
valid solution is

ρ̂(u, v) = δ(v − h(1 − γ u/s))B(u : K ). (4.15)

K may be determined in a number of ways, all of which yield

K = Jo

2
, (4.16)

where Jo is given by equation 4.11. If sh/γ < 1 (h > 1
2 ) as Figure 3 indicates

K = 0, that is, independent of the initial state, the system seeks out the limit
cycle denoted by C∞ (v∞ � v̄∞).

5 Improved Asymptotics

The boundary layer analysis of the previous section has several shortcom-
ings, one of which is that it lacks validity when s ≈ γ , and smaller. To
rectify this and other deficiencies, mentioned below, observe that the one-
dimensional flux satisfies

(s − γ u)φ − µ
∂φ

∂u
= s, (5.1)
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gotten by substituting φ = sρ1/Jo in equation 4.3. For φ(1) = 0 this has the
solution (Brunel & Hakim, 1999; Sirovich et al., 2000)

φ(u) = s
µ

exp
[

−
(

γ u2

2µ
− su

µ

)]∫ 1

u
exp

[
γw2

2µ
− sw

µ

]
dw. (5.2)

We observe that

−µ
∂φ

∂u

∣∣∣∣
u=1

= s, (5.3)

and to lowest order in µ,

φ(u = 0) ≈ 1. (5.4)

Thus, the (exact) solution (but with K still open) of equation 4.4 is

B = K
s

φ(u). (5.5)

Similarly, the marginal distribution, equation 4.3, has the solution

ρ1(u) = Jo

s
φ(u). (5.6)

(As is easily seen, equation 5.5 yields equation 4.13 for µ ↓ 0 when u ≈ 1.)
As mentioned earlier, imposition of the normalization (see equation 4.4)
leads to the determination of Jo (Sirovich et al., 2000):

1
Jo

= −µγ

∫ 1

0
du ln u

{
(γ (1 − u) − s) exp

[
−

(
γ u2

2µ
− u

µ
(γ − s)

)]

− (uγ − s) exp
[

γ u2

2µ
− su

µ

]}
. (5.7)

The RGC firing rate with diffusion, Jo , is plotted in Figure 4, along with the
nonstochastic rate ν(s) (see equation 3.13).

Clearly the stochastic nature of diffusion in the u-direction should mit-
igate the abrupt loss of firing that occurs at s = γ in the expression for
ν(s), equation 3.13. Also the simple boundary layer analysis above in-
dicates an abrupt loss of LGN firing for sh/γ = 1, equation 3.12, and it
might be supposed that the presence of RGC diffusion would be mitigat-
ing and allow occasional sparsely spaced LGN impulses in this range. The
simple boundary layer analysis is not sufficiently refined to account for
the vertical diffusion of δ(v − h) as it evolves across the unit square from
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Figure 4: Jo represents the RGC firing rate given by equation 5.7, for γ −1 = 50
msec. K , the LGN firing rate, is calculated from equation 6.8. Note that this
asymptotes to Jo/2 see equation 4.16.

u = 0 to u = 1, under which action the v-neuron could fire, K �= 0, albeit
infrequently.

On the other hand φ(u), equation 5.2, is an exact solution of 4.1, which
satisfies the exact boundary condition equation 5.3, and for µ small has a
convenient approximation (see equation 5.4). With this in mind, based on
the form of equation 4.15, we seek an approximate solution of equation 4.1
in the form

ρ̂ = D̃(u, v)φ(u). (5.8)

If equation 5.8 is substituted into equation 4.1, we obtain

φ

[
∂

∂u

((
u − s

γ

)
D̃

)
+ µ

γ

∂2 D̃
∂u2 + v

∂ D̃
∂v

]
+

{
2
µ

γ

∂φ

∂u
∂ D̃
∂v

}
= 0. (5.9)
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In a moment we will argue that the term in the curly brackets in equation
5.9 is small and thus that we need only consider the solution for vanishing
square brackets, which we denote by D,

∂

∂u

{
(u − s/γ )D + µ

γ

∂

∂u
D

}
+ v

∂ D
∂v

= 0. (5.10)

Under the transformation

ln v = −t′; x = u − s
γ

, (5.11)

equation 5.10 becomes

∂ D
∂t′ = ∂

∂x

(
xD + µ

γ

∂ D
∂x

)
, (5.12)

an Ornstein-Uhlenbeck equation (Risken, 1996; Gardiner, 2005). For present
purposes, a useful solution of equation 5.10 is

D(u, v : v0)




= s
γ v0

exp
[ − {

u − s
γ

(
1 − v

vo

)}2/
2µ

(
1 − v2

v2
0

)
γ −1

]
√

2µπ
(
1 − v2

v2
0

)/
γ

, v < v0.

≡ 0, v ≥ v0

(5.13)

That D ≡ 0 for v > v0 follows from t′, in equation 5.12, being time-like. (It is
of more than passing interest that ρ̂ = D/v is an exact solution of equation
4.1.) For µ ↓ 0, equation 5.13 becomes

D(u, v : v0) → δ(v − v0(1 − γ u/s)). (5.14)

Thus the notation of equation 5.13 indicates that v = v0 is the location of
the delta function at u = 0. Equation 5.14 also shows that equation 5.10,
for v0 = h, tends to equation 4.15. (Equation 5.13 comes from an infinite
domain analysis, and some fine print is in order. For u = 0, equation 5.13
is not gaussian, but for µ small, it retains the delta function property, and
the integral over 0 < v < 1 is close to unity. With varying small error, this is
true for 0 ≤ u ≤ 1. Additionally, due to diffusion, equation 5.13 introduces
a back flux to u = 0. This, however, is negligible.)

For the case of small µ, the curly bracketed term in equation 5.10 is
small, O(µ), except in the boundary layer where µ

∂φ

∂u is O(1). However, in
the boundary layer, D is a narrow gaussian, equation 5.14, for µ ↓ 0, and
∂ D
∂v

, which appears in the curly brackets, has a zero crossing at v = v0(1 − γ

s ),
which gives some basis for neglecting this term. Alternately, when u → 1,
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∂ D
∂v

represents a dipole of flux, and its integral is negligible. In any case there
is a basis for the neglect of the bracketed term in equation 5.9. And in the
following we take

ρ̂(u, v) ≈ D(u, v : v0)φ(u) (5.15)

as the (approximate) Green’s function solution of equation 4.1, that is, it
tends to a delta function at u = 0, v = v0. The use of this approximation
allows for an explicit formulation of the problem, which is solved using
numerical methods, in the next section. In an effort to provide insight into
the nature of the dynamics, we first present a heuristic discussion relating
the deterministic case to the computational results.

The Green’s function see equation 5.15 describes how a source, at u = 0
and v = v0, diffuses in the u-direction. We recall that the LGN firing rate, K ,
produces a delta function of the same strength at (u, v) = (0, 0). This later
shows up as a flux source K δ(v − h), at u = 0. Recall that in the deterministic
case, the LGN neuron will fire if the next trajectory (subcharacteristic of
equation 4.1) crosses u = 1 at v > 1 − h. If not, and sh/γ > 1, it will fire
after some number of jumps across the computational square, equation
3.17, while if sh/γ < 1, the LGN never fires.

To envision how this picture is modified by stochasticity, it is useful for
the moment to imagine an iterative process leading to equilibrium. At the
first stage, the source K δ(v − h) evolves according to equation 5.15 and
appears at u = 1 as a flux shown in Figure 5 as a continuous, gaussian-
like curve. The net flux, at u = 1, to the right of v = 1 − h, generates LGN
firing, which appears at the origin. The flux to the left of v = 1 − h, shown
as a dashed curve in the figure, is then mapped to u = 0, and v > h, from
equation 4.7, also shown as a dashed curve in the figure. This last portion
of influx at u = 0 then evolves via the Green’s function, equation 5.15, into
the dashed curve at u = 1, v > 1 − h shown in the figure. The result of these
early stages as sketched in Figure 5 depicts the case when the deterministic
trajectory crosses u = 1 to the right of 1 − h. This process can be repeated
indefinitely and, as indicated in the next section, leads to the exact solution.

Figure 6 shows four cases of calculations of the probability density as
generated by the precise formulation given in the next section. At the upper
left ρ̂(u, v), for sh/γ = 3, is shown. In this case, as will be seen, most of
the flux at u = 1 is to the right of 1 − h. However, there is an imperceptible
ripple that emanates from the neighborhood of v = 1, which can be seen in
the numerics. In the context of the deterministic case, this corresponds to
neurons with a spiking ratio of 3. This slight bimodality is just perceptible at
sh/γ = 2.28 and becomes pronounced for sh/γ = 1.56. The enhancement of
the second bump reflects the effect of an increasing number of neurons that
require many jumps, equation 3.17, for the LGN cell to fire. It is also clear
that the strength of the delta function at u = 0, v = h, which reflects the LGN
firing rate, diminishes as sh/γ decreases. In the final frame at the lower right,
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Figure 5: Heuristic analysis. The net flux for v > 1 − h, at u = 1, accounts for
the LGN firing rate K . This appears as a delta function at u = 0, v = 0, as a
heavy line, and since flux is conserved at v = 0, there is also a delta function of
strength K at u = 1. This in turn produces the δ-function indicated at v = h. The
last generates the smooth gaussian-like flux shown at u = 1. The flux at u = 1
for v > 1 − h contributes spiking ratio 2 firing to K , and the v < 1 − h dashed
curve, right, translates by h to u = 0 as shown, and then appears at u = 1 for
v > 1 − h and contributes LGN firing at spiking ratio 3.

sh/γ = .84, the delta function is quite small (note the diminished vertical
scale), and we are in a regime for which sh/γ < 1, so that deterministically,
the LGN would not fire. For the deterministic analog of this last case, we
encountered an attracting limit cycle,

sh/γ = v∞ � v̄∞ =
(

1 − γ

s

)
sh
γ

, (5.16)

and no LGN firing. The frame in the lower right of Figure 6 indicates that
the limit cycle, equation 5.16, now appears as a diffusely spread region,
enough so that it produces a small level of LGN firing.

6 Integral Equation Formulation

For small µ, equation 5.15 provides an accurate approximation for the
Green’s function which we now use to reduce the problem to an integral
equation.
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Figure 6: Exact computations based on equation 6.7. In all cases h = hv = .6,
γ −1 = 50 msec and hu = .03. The strength of the delta function at u = 0, v = h,
is K . An extra plot has been inserted near u = 1 to indicate that the density falls
to zero at u = 1. Note that the vertical plot scales vary.

Up to a multiplicative constant, which we fix later, we express the exiting
flux at u = 1 by

J (u = 1, v) = ψ(v) + δ(v)
∫ 1

1−h
ψ(v′) dv′, (6.1)

where the second term on the right of equation 6.1 specifies that the input
flux at the origin comes from the integrated flux leaving the last subinterval
at u = 1. From the boundary condition, equation 4.7, the incoming flux at
u = 0 (excluding the flux at v = 0) is then

Ĵ (u = 0, v) = ψ(v − h) +
∫ 1

1−h
ψ(v′) dv′δ(v − h) ≈ sρ̂(0, v), (6.2)

where the approximation on the right-hand side of equation 6.2 follows
from the smallness of µ. From this and the Green’s function, equation 5.15,
it follows that

ρ̂(u, v) =φ(u)
∫ 1

h
D(u, v : v0)ρ̂(0, v0) dv0

= φ(u)
s

{∫ 1

1−h
ψ(v′) dv′ D(u, v : h) +

∫ 1−h

0
D(u, v : v′+h)ψ(v′) dv′

}
.

(6.3)
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Next, we use equation 5.3, −µ
∂φ

∂u |u=1 = s, to calculate Ĵ (u = 1, v), which for
v > 0 is just ψ(v) and hence,

ψ(v) =
∫ 1−h

0
D(1, v : v′ + h)ψ(v′)dv′

+ D(1, v : h)
∫ 1

1−h
ψ(v′)dv = Lψ, (6.4)

which is the desired integral equation.1

Equation 6.4 can be regarded as an eigenfunction problem with unit
eigenvalue. The presence of a unit eigenvalue is confirmed by the fact that
ψ̃ = 1 is an eigenfunction of the adjoint, L†, with unit eigenvalue. Equa-
tion 6.4 also has the interpretation that ψ is an admixture of D(1, v, v′) for
v′ ≥ h.

It still remains for us to appropriately normalize the eigenfunction ψ(v).
Toward this end we write the appropriate solution as

�(v) = Cψ(v), (6.5)

then instead of equation 6.1, we have

J (u = 1, v) = C
(

ψ(v) +
∫ 1

1−h
ψ(v′) dv′δ(v)

)
(6.6)

and since the net flux at u = 1 is just the RGC firing rate Jo , it follows that
the solution for the exiting flux for v > 0, at u = 1, is given by

�(v) = Joψ(v)∫ 1
0 ψ(v′) dv′ + ∫ 1

1−h ψ(v′) dv′
, (6.7)

and hence that the transfer ratio is

K
Jo

=
∫ 1

1−h Joψ(v′) dv′∫ 1
0 ψ(v′) dv′ + ∫ 1

1−h ψ.(v′) dv′
. (6.8)

It is clear from equation 6.8 that for relatively small current K/J → 0, while
for large currents K/Jo → 1/2.

1If equation 6.4 is formally written as (1 − T)ψ = D(1, v : h), then the iteration proce-
dure sketched in the previous section yields the first few terms of the Neumann series,
ψ = (

∑∞
n=0 Tn)D(1, v : h).
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Figure 7: The transfer ratio, K/Jo , as given by equation 6.8, for γ = 20/sec
and h = .6, is plotted as a dashed line, which contrasts with equation 3.17, the
unbroken line. Circles show the four selected values shown in Figures 6 and 8.

Equation 6.4 was directly discretized and solved numerically. With the
solution 6.7 known, equation 6.6 gives Ĵ (v) and equation 6.3 furnishes
ρ̂(u, v). Figure 8 exhibits a range of solutions of ψ(v), for 3 ≥ sh/γ ≥ .84,
with γ −1 = 50 msec and h = .6. Note that these correspond to the four
solutions for ρ̂(u, v), arising from equation 6.3, that are depicted in Figure
6. At the highest value, sh/γ = 3, the delta function at u = 0, v = h, diffuses
into a near gaussian at v = (1 − γ /s)h, well to the right of v = 1 − h. As
indicated in Figure 7, the spike ratio is almost 2 and explains why the
corresponding plot in Figure 6 does not show bimodality. At the next value,
sh/γ = 2.28, in Figure 8, the diffused delta function straddles v = 1 − h,
with most of the gaussian to the right of v = 1 − h, so that most LGN
firings corresponded to the spike ratio of 2, with a smaller fraction having
a spike ratio of 3 (see Figure 5), and from Figure 7 we see the spiking
ratio is 2.1 in case. The reverse situation is seen for sh/γ = 1.56, where the
spike ratio is 2.8. Finally for sh/γ = .84 the peak lies at v = v̄∞ = sh

γ
− h,

corresponding to the location of the limiting cycle. In this last case as seen
from Figure 7, the RGC is mainly shooting blanks, since the spiking ratio is
50.
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Figure 8: Range of solutions, ψ normalized to have a unit integral, for γ −1 = 50
msec and h = .6. Each case shown has a transfer ratio shown on Figure 7.

7 Summary and Discussion

Insight into the workings of the RGC/LGN system, along with clear-cut
criteria, was gained by examining the deterministic (nonstochastic) version
of the RGC/LGN system, equations 2.1 and 2.2. Within this framework, the
retinal ganglion cells do not spike unless the incoming average current, s,
exceeds leakage s/γ > 1. Moreover, even if the RGC spikes, no LGN spiking
is present unless sh/γ > 1, that is, S-potential bumps, h, must be large
enough. Even when sh/γ exceeds unity, many arrivals may be necessary
for an LGN spike; that is, the transfer ratio can be very small. This is depicted
in Figure 7 by the rectilinear plot, for the nominal value of h = .6. For this
value of h, the transfer ratio does not reach the theoretically predicted
maximum until sh/γ ≈ 3. The dashed continuous curve in Figure 7 shows
the blurring of the deterministic boundaries by the inclusion of stochasticity
in the theoretical model.

The theoretical model was obtained by regarding the RGC/LGN as a
single dynamical system, thus preserving precise firing, and then placing
this dynamical system within a population framework, resulting in equa-
tions 2.3 (or 2.15) and 2.16 in the diffusive approximation. An approximate
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solution of this model, for small diffusivity in the case of equilibrium, sec-
tions 4 and 5 revealed that the deterministic picture serves as a scaffolding,
which stochasticity adorns with diffusion and a boundary layer. Moreover,
the deterministic discreteness of the transfer ratio transforms to a collection
of substates that have different transfer ratios resulting in an average value,
as depicted in Figure 7.

Finally, through good fortune, we obtained a highly accurate form of the
Green’s function for the problem in the limit of small diffusivity. This was
applied in section 6 to reduce the solution of the problem to an integral
equation that could be treated numerically with ease. Figure 6 exhibits
a range of solutions, ρ̂(u, v), and Figure 8 a corresponding range of exit
fluxes (and hence firing rates), based on sh/γ , obtained from the solution
of the integral equation. In all cases, the area under each curve indicates the
RGC firing rate, and the area to the right of 1 − h, the corresponding LGN
firing rate. The transfer ratios for the depicted cases are shown as circles on
Figure 7.

The model presented in this letter rests on accepted and tested neuronal
mechanisms and was developed within the framework of an experimen-
tally determined wiring diagram. Within the framework of the model, the
issue of “editing by the LGN” takes on a differing perspective. Instead of
some elaborate or sophisticated circuitry designed to extract or verify in-
formation, the model suggests that relay cells have been designed to fire
mainly when they receive at least two arrivals within a short enough inter-
val of time that is determined by leakage. Note that the relay cell leakage
time has been estimated at 10 msec (Ozaki & Kaplan, 2006), a factor of five
shorter than the estimated RGC leakage time of 50 msec (Fohlmeister &
Miller, 1997). Some modification of the view expressed may be necessary
when we better know the nature and role of other inputs to relay cells.

A further feature of the formalism is the inclusion of the stochasticity
that is implicit in the population approach. Although not carried out here,
a further source of stochasticity is variation in synaptic arrival strength;
which may be implemented, with a probability distribution in jump size
h (Omurtag, Knight, et al., 2000). As mentioned earlier, our model can
be further enriched by including additional interactive populations that
reflect the known wiring diagram. A brief example of this, which includes a
brainstem input, is presented in the appendix and briefly discussed below.

A desirable, if not essential, feature of any model is that it be predictive
(and falsifiable; Popper, 2002), which is a feature of the model proposed here
(see Hayot & Tranchina, 2001, for a another approach). In this connection
mention should be made of the recent series of models (Pillow & Simoncelli,
2006); Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky, 2005; Jolivet,
Lewis, & Gerstner, 2004; Schwartz, Pillow, Rust, & Simoncelli, 2006; Keat,
Reinagel, & Reid, 2001; Casti et al., 2007) for RGC and RGC/LGN responses
that reflect a different point of view. These models are largely based on
mathematical and statistical structures, in contrast to the more biologically
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based model of this letter. A further contrast with the formulation here is that
these models are usually trained by experimental data to become predictive
tools. Application of such methods to response behavior of our model might
provide a revealing sources of information from a different perspective.

7.1 Extension of the Model. A result of the analysis presented here is
that for hv < 1, the transfer ratio is never greater than 1/2 or, alternatively,
at least two RGC spikes are necessary for an LGN spike. As Figure 2 sug-
gests, S-potentials are below threshold. (Since Figure 2 is an extracellular
recording, it does not reliably estimate hv .)

This point is of some importance since the transfer ratio is known to
sometimes rise above .5 but always remains below unity (Andolina et al.
2007; Sincich et al., 2007; Ozaki & Kaplan, 2006). Close examination of
Figure 2 shows small, persistent bumps that are not recorded as S-potential
arrivals. If these represent poorly resolved RGC arrivals, then this might al-
ter the calculated transfer ratios. Finally, it should be noted that the analysis
applies only to equilibrium and that unsteadiness will lead to new phe-
nomena. Ozaki and Kaplan (2006) persuasively demonstrate that an area
of the brainstem, the parabrachial nucleus (PBN), effects LGN activity and
that this affect is globally felt in the LGN so that, consistent with our model,
for intermittent periods, PBN activity transfer ratios could rise above .5.
Such results were demonstrated under spontaneous fluctuations and were
also shown by electrical stimulation of the PBN. The appendix contains a
discussion of how the model might be modified to treat this case.

Appendix: Details and Extensions of the Model

A.1 Detailed Two-Neuron Equations. If equation 2.4 is substituted into
equation 2.3, we obtain

∂ρ(u, v, t)
∂t

= ∂

∂u
(γuuρ) + ∂

∂v
(γvvρ) + σ (t){ρ(u − hu, v) − ρ(u, v)}

+ σ (t)δ(u)
∫ 1

1−hu

du′ρ(u, v − hv, t) du′ + σ (t)δ(u)δ(v)

×
∫ 1

1−hu

du′
∫ 1

1−hv

dv′ρ(u′, v′, t). (A.1)

If equation 2.11 is substituted into A.1, we obtain the following coupled
system of equations for describing the RGC/LGN interaction:

∂ A
∂t

= ∂

∂v
(γvvA) − σ (t)A+ σ (t){δ(v − hv)

∫ 1

1−hu

B(u′, t) du′

+
∫ 1

1−hu

du′ρ̂(u′, v − hv, t)}
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∂ B
∂t

= ∂

∂u
(γuuB) + σ (t){B(u − hut) − B(u, t)} + σ (t)C(t)δ(u − hu)

∂C
∂t

=−σ (t)C + σ (t)
∫ 1

1−hu

du′
∫ 1

1−hv

dv′ρ̂(u′, v′, t)

∂ρ̂

∂t
= ∂

∂u
(γuuρ̂) + ∂

∂v
(γvvρ̂) + σ (t){ρ̂(u − hu, v, t) − ρ̂(u, v, t)}

+ σ (t)A(v, t)δ(u − hu). (A.2)

It is clear from equation A.2 that B and ρ̂ have discontinuities at u = hu and
that A(v, t) has one at v = hv .

A.2 RGC/LGN/PBN Model. As discussed in the main text the experi-
ments of Ozaki and Kaplan (2006) suggest that an external PBN current to
the LGN relay cells can play an important role. To account for this, and in
the absence of any knowledge about PBN circuitry, we might account for
this by replacing equation 3.2 by

dv

dt
= −γ v + h

∑
δ(t − τ j ) + hB

∑
δ
(
t − τ B

j

)
, (A.3)

where {τ B
j } denote PBN arrival times and hB the corresponding membrane

potential jumps. Within the deterministic framework of section 3, the times
{τ j } are set by the u = 1 exit times. By contrast, {τ B

j } are externally set, and
at such times, the trajectory in the unit square makes a horizontal leap h B

to the right.
Depending on the frequency of PBN arrivals, τB(t), and the magnitude of

hB , a variety of possibilities can occur. A single RGC arrival can produce an
LGN firing, and LGN firings can now also occur with trajectories leaving the
square at v = 1. To include the presence of a PBN current, in the population
equation we replace Jv in equation 2.3 by

Jv = −γvvρ(u, v, t) + σB(t)
∫ v

v−hB

ρ(u, v′, t) dv′ (A.4)

and add the source term

σB(t)
∫ 1

1−hB

ρ(u, v′, t) dv′δ(v) (A.5)

to the right-hand side of equation 2.3. Equation A.5 deals with the feature
that there is now a flux of neurons that leaves the square at v = 1 and
reappears at v = 0.
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