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Preface

The aim of this monograph is essentially to investigate the connec-

tions among fractional calculus, linear viscoelasticity and wave mo-

tion. The treatment mainly reflects the research activity and style

of the author in the related scientific areas during the last decades.

Fractional calculus, in allowing integrals and derivatives of any

positive order (the term “fractional” is kept only for historical rea-

sons), can be considered a branch of mathematical physics which

deals with integro-differential equations, where integrals are of con-

volution type and exhibit weakly singular kernels of power law type.

Viscoelasticity is a property possessed by bodies which, when de-

formed, exhibit both viscous and elastic behaviour through simul-

taneous dissipation and storage of mechanical energy. It is known

that viscosity refers mainly to fluids and elasticity mainly to solids,

so we shall refer viscoelasticity to generic continuous media in the

framework of a linear theory. As a matter of fact the linear theory of

viscoelasticity seems to be the field where we find the most extensive

applications of fractional calculus for a long time, even if often in an

implicit way.

Wave motion is a wonderful world impossible to be precisely de-

fined in a few words, so it is preferable to be guided in an intuitive

way, as G.B. Whitham has pointed out. Wave motion is surely one

of the most interesting and broadest scientific subjects that can be

studied at any technical level. The restriction of wave propagation

to linear viscoelastic media does not diminish the importance of this

research area from mathematical and physical view points.
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This book intends to show how fractional calculus provides a suit-

able (even if often empirical) method of describing dynamical proper-

ties of linear viscoelastic media including problems of wave propaga-

tion and diffusion. In all the applications the special transcendental

functions are fundamental, in particular those of Mittag-Leffler and

Wright type.

Here mathematics is emphasized for its own sake, but in the sense

of a language for everyday use rather than as a body of theorems and

proofs: unnecessary mathematical formalities are thus avoided. Em-

phasis is on problems and their solutions rather than on theorems and

their proofs. So as not to bore a “practical” reader with too many

mathematical details and functional spaces, we often skim over the

regularity conditions that ensure the validity of the equations. A

“rigorous” reader will be able to recognize these conditions, whereas

a “practionist” reader will accept the equations for sufficiently well-

behaved functions. Furthermore, for simplicity, the discussion is re-

stricted to the scalar cases, i.e. one-dimensional problems.

The book is likely to be of interest to applied scientists and engi-

neers. The presentation is intended to be self-contained but the level

adopted supposes previous experience with the elementary aspects

of mathematical analysis including the theory of integral transforms

of Laplace and Fourier type.

By referring the reader to a number of appendices where some

special functions used in the text are dealt with detail, the author

intends to emphasize the mathematical and graphical aspects related

to these functions.

Only seldom does the main text give references to the literature,

the references are mainly deferred to notes sections at the end of

chapters and appendices. The notes also provide some historical

perspectives. The bibliography contains a remarkably large number

of references to articles and books not mentioned in the text, since

they have attracted the author’s attention over the last decades and

cover topics more or less related to this monograph. The interested

reader could hopefully take advantage of this bibliography for enlarg-

ing and improving the scope of the monograph itself and developing

new results.
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Preface ix

This book is divided into six chapters and six appendices whose

contents can be briefly summarized as follows. Since we have chosen

to stress the importance of fractional calculus in modelling viscoelas-

ticity, the first two chapters are devoted to providing an outline of

the main notions in fractional calculus and linear viscoelasticity, re-

spectively. The third chapter provides an analysis of the viscoelas-

tic models based on constitutive equations containing integrals and

derivatives of fractional order.

The remaining three chapters are devoted to wave propagation

in linear viscoelastic media, so we can consider this chapter-set as a

second part of the book. The fourth chapter deals with the general

properties of dispersion and dissipation that characterize the wave

propagation in linear viscoelastic media. In the fifth chapter we dis-

cuss asymptotic representations for viscoelastic waves generated by

impact problems. In particular we deal with the techniques of wave-

front expansions and saddle-point approximations. We then discuss

the matching between the two above approximations carried out by

the technique of rational Padè approximants. Noteworthy examples

are illustrated with graphics. Finally, the sixth chapter deals with

diffusion and wave-propagation problems solved with the techniques

of fractional calculus. In particular, we discuss an important problem

in material science: the propagation of pulses in viscoelastic solids

exhibiting a constant quality factor. The tools of fractional calculus

are successfully applied here because the phenomenon is shown to be

governed by an evolution equation of fractional order in time.

The appendices are devoted to the special functions that play a

role in the text. The most relevant formulas and plots are provided.

We start in appendix A with the Eulerian functions. In appendices

B, C and D we consider the Bessel, the Error and the Exponential

Integral functions, respectively. Finally, in appendices E and F we

analyse in detail the functions of Mittag-Leffler and Wright type,

respectively. The applications of fractional calculus in diverse areas

has considerably increased the importance of these functions, still

ignored in most handbooks.

Francesco Mainardi

Bologna, December 2009
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