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Abstract

The entire function (of z)

P

2) =y — C
6(p, 5;2) ;)M(pkw),w 1, B€C,

named after the British mathematician E.M. Wright, has appeared for the first
time in the case p > 0 in connection with his investigations in the asymptotic the-
ory of partitions. Later on, it has found many other applications, first of all, in the
Mikusinski operational calculus and in the theory of integral transforms of Hankel
type. Recently this function has appeared in papers related to partial differential
equations of fractional order. Considering the boundary-value problems for the
fractional diffusion-wave equation, i.e., the linear partial integro-differential equa-
tion obtained from the classical diffusion or wave equation by replacing the first- or
second-order time derivative by a fractional derivative of order a with 0 < o < 2,
it was found that the corresponding Green functions can be represented in terms
of the Wright function. Furthermore, extending the methods of Lie groups in par-
tial differential equations to the partial differential equations of fractional order
it was shown that some of the group-invariant solutions of these equations can
be given in terms of the Wright and the generalized Wright functions. In this
survey paper we consider some of the above mentioned applications of the Wright
function with special emphasis of its key role in the partial differential equations
of fractional order.

* Partially supported by the the Research Commission of Free University of
Berlin (Project ”Convolutions”) and by the Italian CNR and INFN
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We also give some analytical tools for working with this function. Begin-
ning with the classical results of Wright about the asymptotics of this function,
we present other properties, including its representations in terms of the special
functions of the hypergeometric type and the Laplace transform pairs related to
the Wright function. Finally, we discuss recent results about distribution of zeros
of the Wright function, its order, type and indicator function, showing that this
function is an entire function of completely regular growth for every p > —1.

Mathematics Subject Classification: primary 33E20, secondary 33C20, 30C15,
30D15, 26A33, 45J05, 45K05

Key Words and Phrases: Wright function, indicator function, asymptotics of
zeros, generalized hypergeometric function, diffusion-wave equation, Green func-
tion, scale-invariant solutions, Erdélyi-Kober operators

1. Introduction

The purpose of this survey paper is to outline the fundamental role of the
Wright function in partial differential equations of fractional order, to consider
some other applications of this function and to give its analytical properties in-
cluding asymptotics and distribution of its zeros. Partial differential equations
of fractional order (FPDE) are obtained by replacing some (or all) derivatives
in partial differential equations by derivatives of fractional order (in Caputo,
Riemann-Liouville or inverse Riesz potential sense). Mathematical aspects of
the boundary-value problems for some FPDE have been treated in papers by sev-
eral authors including Engler [5], Fujita [7], Gorenflo and Mainardi [11], Mainardi
[20]-[23], Podlubny [32], Priiss [34], Saichev and Zaslavsky [35], Samko et al. [36],
Schneider and Wyss [37] and by Wyss [45].

From the other side, some FPDE were successfully used for modelling relevant
physical processes (see, for example Giona and Roman [9], Hilfer [15], Mainardi
[21], Metzler et al. [26], Nigmatullin [28], Pipkin [31], Podlubny [32] and references
there). In applications, special types of solutions, which are invariant under some
subgroup of the full symmetry group of the given equation (or for a system of
equations) are especially important.

Recently, the scale-invariant solutions for time-fractional diffusion-wave equa-
tion (with the fractional derivative in the Riemann-Liouville sense) and for the
more general time- and space-fractional partial differential equation (with the
Riemann-Liouville space-fractional derivative of order 8 < 2 instead of the sec-
ond order space derivative) have been presented by Buckwar and Luchko [1]
and by Luchko and Gorenflo [19], respectively. The case of the time-fractional
diffusion-wave equation with the Caputo fractional derivative has been consid-
ered by Gorenflo, Luchko and Mainardi [13].

The plan of the paper is as follows. In Section 2, following the papers by
Djrbashian and Bagian [4], Gaji¢ and Stankovié¢ [8], Luchko and Gorenflo [19],
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Mainardi [23], Mainardi and Tomirotti [24], Mikusinski [27], Pathak [30], Pollard
[33], Stankovié [39], and Wright [42], [44], we recall the main properties of the
Wright function including its integral representations, asymptotics, representa-
tions in terms of the special functions of the hypergeometric type and the Laplace
transform pairs related to the Wright function. Finally, we discuss new results
about distribution of zeros of the Wright function, its order, type and indicator
function, showing that this function is an entire function of completely regular
growth for every p > —1.

In Section 3, we outline some applications of the Wright function, beginning
with the results by Wright [41] in the asymptotic theory of partitions. Special
attention is given to the key role of the Wright function in the theory of FPDE. Fol-
lowing Gorenflo, Mainardi and Srivastava [14] and Mainardi [20]-[23], we consider
in details the boundary-value problems of Cauchy and signalling type for the frac-
tional diffusion-wave equation, showing that the corresponding Green functions
can be represented in terms of the Wright function. We present also some results
from Buckwar and Luchko [1], Gorenflo, Luchko and Mainardi [13], Luchko and
Gorenflo [19] concerning the extension of the methods of the Lie groups in partial
differential equations to FPDE. It will be shown that some of the group-invariant
solutions of FPDE can be given in terms of the Wright and the generalized Wright
functions.

We remark finally that the present review is essentially based on our original
works. For the other applications of the Wright function, including Mikusiniski’s
operational calculus and the theory of integral transforms of Hankel type we refer,
for example, to Kiryakova [16], Krétzel [17], Mikusiniski [27], and Stankovié¢ [39)].

2. Analytical properties

2.1. Asymptotics

Probably the most important characteristic of a special function is its asymp-
totics. In the case of an entire function there are deep relations between its
asymptotic behaviour in the neighbourhood of its only singular point — the es-
sential singularity at z = oo — and other properties of this function, including
distribution of its zeros (see, for example, Evgrafov [6], Levin [18]). It follows
from the Stirling asymptotic formula for the gamma function that the Wright

function
k

ad z
¢(paﬂaz)_§mvp>_laﬁéca (1)

is an entire function of z for p > —1 and, consequently, as we will see in the later
parts of our survey, some elements of the general theory of entire functions can
be applied.
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The complete picture of the asymptotic behaviour of the Wright function for
large values of z was given by Wright [42] in the case p > 0 and by Wright [44] in
the case —1 < p < 0. In both cases he used the method of steepest descent and
the integral representation

¢(p, B 2) = i/H TP, p>—1, BeC (2)

where Ha denotes the Hankel path in the {-plane with a cut along the negative
real semi-axis arg¢( = w. Formula (2) is obtained by substituting the Hankel
representation for the reciprocal of the gamma function

1 1

- = Cpr—s
I‘(s)_27ri/HaeC d¢, seC (3)

for s = pk + 3 into (1) and changing the order of integration and summation.
Let us consider at first the case p > 0.
THEOREM 2.1.1. If p > 0, arg(—z) = ¢, [£| < 7, and
Zy = (plz) etV iétm)/(e1) - 7, — (p| 2|y (PHD gt E=m)/ (o)

then we have
d(p, B;2) = H(Z1) + H(Z2), (4)
where H(Z) is given by

M My
H(Z)zzé—ﬁeppZ{Z(_lz)Tero('Z'LMH)},Zeoo (5)

m=0
and the a,,, m =0,1,..., are defined as the coefficients of v?™ in the expansion
of .
T'(m+ 3) 2 \™"z
1 — )-8 —2m—1
s (o) @)
with

1
+3v+ 3.4

o= {14032, B2 1

In particular, if 5 € R we get the asymptotic expansion of the Wright function
¢(p, B; —z) for £ — +oo in the form

9(p, B —) = 2?3 P co (Wp(% )+ oa” smp> {c1+0(™)},
(6)

where p = li—p, oc=(1+ p)p_ﬁ and the constant ¢; can be exactly evaluated.
If we exclude from the consideration an arbitrary small angle containing the
negative real semi-axis, we get a simpler result.
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THEOREM 2.1.2. If p >0, argz =16, |8] <7 —e, >0, and
Z = (p|z|)1/(p+1)ei9/(p+1),
then we have
¢(p, B;2) = H(Z), (7)
where H(z) is given by (5).

In the case p = 0 the Wright function is reduced to the exponential function
with the constant factor 1/T'(3):

¢(0,8;2) = exp(z)/T(B), (8)

which turns out to vanish identically for 8 = —n, n=0,1,....
To formulate the results for the case —1 < p < 0 we introduce some notations.
Let

y=—z, —n<argz<m, —w<argy <, (9)

and let
Y = (1+p) ((—p) ) /7. (10)

THEOREM 2.1.3. If -1 < p <0, |argy| < min{37(1+p), 7} —¢, € >0, then

o(p, B;2) = I(Y), (11)
where
M-1
I(Y)=Y2 By { > AnY T+ O(Y—M)} , Y = oo, (12)
m=0

and the coeficients A,,,, m = 0,1... are defined by the asymptotic expansion

(1- 8 - pt) _ %f (=1)™ A
T

21 (=p)=PH(L + p)AFPEFDT (2 + 1) = T((1+p)t+B+35+m)

+0 !
T((l+pt+B+3+M))’

valid for argt, arg(—pt), and arg(l — B — pt) all lying between —m and 7 and t
tending to infinity.

If —1/3 < p < 0, the only region not covered by Theorem 2.1.3 is the neigh-
bourhood of the positive real semi-axis. Here we have the following result.
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THEOREM 2.1.4. If -1/3 < p <0, |argz| <7w(l+p) —¢€, € >0, then

¢(p, B;2) = I(11) + I(Y2), (13)
where I(Y) is defined by (12),

Yi = (14 ) ((=p) 2™ Y5 = (14 p) (—p)P2e™™) /P (19)

hence
YiI=Yif —wm<argz<0, and Yo=Y if 0 <argz <.

As a consequence we get the asymptotic expansion of the Wright function
@(p, B;x) for x — +o0 in the case —1/3 < p < 0, 8 € R in the form:

0p, i) = b= cos(mp( — ) — oa?sinmp) {2+ 0@ )}, (15)

where p = ﬁlp, o=(1 —i—p)(—p)_ﬁ and the constant ¢z can be exactly evaluated.

When —1 < p < —1/3, there is a region of the plane in which the expansion is
algebraic.

THEOREM 2.1.5. If -1 < p< —1/3, |argz| < iw(—1—3p) —¢, € > 0, then
¢(p,B;2) = J(2), z — o0, (16)
where
M-l L(B-1-m)/(=p) b1 n

L(m+1)T (1+(ﬁ~m—1)/(_p))+o(z - ) (17)

m—O

Finally, the asymptotic expansions of the Wright function in the neighbour-
hood of the positive real semi-axis in the case p = —1/3 and in the neighbourhood
of the lines arg z = :i:%w(—l —3p) when —1 < p < —1/3 are given by the following
results by Wright.

THEOREM 2.1.6. If p = —1/3, |argz| < w(1+4 p) —¢€, € >0, then
¢(p, B;z) = 1(Y1) + I(Y2) + J(z), (18)
where I(Y') is defined by (12), Y1,Y2 by (14), and J(z) by (17).

THEOREM 2.1.7. If -1 < p < —1/3, |argztin(—1-3p)| < m(l+p)—¢, € >
0, then
d(p,B;2) = 1(Y) + J(2), (19)

where I(Y') is defined by (12) and J(z) by (17).

The results given above contain the complete description of the asymptotic
behaviour of the Wright function for large values of z and for all values of the pa-
rameters p > —1, § € C. We will use them repeatedly in our further discussions.
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2.2. Representations through hypergeometric functions

Due to the relation

z

S(1v+ 1;—322) = (%) "at). (20)

Wright considered the function ¢(p, 5; z) as a generalization of the Bessel function
Ju(z). In the general case of arbitrary real p > —1 the Wright function is a
particular case of the Fox H-function ([13], [14], [16, App. E|, [38, Chapter 1]):

(0,1), (1 =, p) i '

Unfortunately, since the Fox H-function is a very general object this represen-
tation is not especially informative. It turns out that if p is a positive rational
number the Wright function can be represented in terms of the more familiar
generalized hypergeometric functions. Let be p = n/m with positive integers n
and m. Substituting s = ms; into (21) and making use of the Gauss-Legendre
formula for the gamma function

¢(p, B; 2) = Hyly [—z

(21)

n—1

n k
P(nz) =n""2(2m) 2" [[T(z+~), n=2,3,...
n
k=0
we arrive at the representation
m—1 k')
F(Sl + m 51
no, o nom 1 g1 1 k=0 (=2)™
S Biz) = (2m) = man e [o 8 ;o \mmnn dst,
L_oo F(E — 81+ ;)
=0

(22)
which is equivalent to the representation given by Pathak [30] in terms of the
Meijer G-function ([16, App. A], [25, Chapter 4]). Here L_, is a loop beginning
and ending at —oo, encircling in the positive direction all the poles of I'(s; + %),
k=0,.. — 1, i.e., the points — =%, —1 — £ .... The residue theorem and the
relation ([25 Chapter 3])

—1)k
res,—_;I'(z) = ( k,) , k=0,1,2,...

allow us to represent this integral as a sum of m series of hypergeometric type:

m—1 —k
Il (¢ - 55)
1 m-1 =

m?2 X (=14 :72 —z)™m It
¢( 757 ) ( _1 Z( :t) - (’ETLmZLn> )
T HF( T+ 2 gt d)
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Using the Gauss-Legendre formula and the recurrence and reflection formulae for
the gamma function

s

D(z+1)=2I(z), T(z)I'(1—-2)=

sinmz
to simplify the coeflicients of the series in the last representation we obtain the
final formula,

m—1
zp

" g S L CAm B L Py Ar g P 2T
¢(Ea/87'z)_pzzoplr(ﬁ+%p) OFn+ml< aA(nan+m)aA (m7 ) >a

m ; mmnnt
(23)
where ,F,((a)p; (b)g; 2) is the generalized hypergeometric function ([25, Chapter

4
) 1 k-1
A(k,a) ={a,a+ AR ,a+ T}’ A*(k,a) = A(k,a) \ {1}.
We note that the set A*(k,a) is correctly defined in our case since the number 1
is an element of the set A(m, I%l), 0<p<m-—1.

The same considerations can be applied in the case of negative rational p but
under the additional condition that the parameter 3 is also a rational number. In

particular, we obtain the formulae

1 (=1l 3 3 322
¢(_§, —n; Z) = fl“g + n) ]F] (5 +n; 5, —Z), n = 0, 1, 2, ey (24)
11 (=1 1 1 22
¢(—§,§—TL,Z)— T F(§+n) 1F1(§+n7§7_1)7 n_071727"" (25)
If n =0 we get
1 z 2
20 ) — — —z%/4 )
11 1 2
Ll T = ——emF /4
Hg03i5) = oze M (27)
The formula (26) was given by Stankovié¢ [39]. He also gave the relation (z > 0)
2 _2 1 2 4
¢(_§707 - 3) - _2 /7371_ exp(_m)wfé’% <_27£C> )
where W, ,,(z) is the Whittaker function satisfying the differential equation
d? 1 p V2

The formula (27) as well as some other particular cases of the Wright function
with p and g rational, —1 < p < 0, can be found in Mainardi and Tomirotti [24],
where a particular case of the Wright function, namely, the function

M(zB) =¢(=B,1-B;-2), 0<B<1 (28)
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has been considered in details. For 8 = 1/q, ¢ = 2,3,... the representation

m—1
1 1
() = 5 LV Tnfm) s/ m)F(imm) (29
with
oo k( +1) ka—‘rn—l
F(z; = —1)Hm —_
(mm) = (=0 ol
was given. Here (a)g, k=0,1,2,..., denotes the Pochhammer symbol
I'a+k
(a) = Hatk) —a(a+1)...(a+k—1).
I'(a)

In particular, the formula (29) gives us for m = 3 the representation

12 .
O(=5,5:2) = 3 Ai(—=2/3'%)

with the Airy function Ai(z) . Finally, we rewrite the formulae (24), (25) by using
the Kummer formula ([25, Chapter 6])

1F1(a;c;z) = €* 1F1(c — a;¢;—2)

in the form

1
(]5(—5, —n;z) = e_z2/4an(z2), n=20,1,2,..., (30)

11
¢(_§7 2

where P,(z), Q.(z) are polynomials of degree n defined as

n;z) = e_z2/4Qn(22), n=0,1,2,..., (31)

(-1 :
P,(z) = TF(3/2 +n) 1F1(—n;3/2; Z)v

@n(2) = 02 4m) (w12 ),

2.3. Laplace transform pairs related to the Wright function

In the case p > 0 the Wright function is an entire function of order less than
1 and consequently its Laplace transform can be obtained by transforming term-
by-term its Taylor expansion (1) in the origin. As a result we get (0 < t < +o0,



392 R. Gorenflo, Yu. Luchko, F. Mainardi

s € C, 0 <e<|s|, e arbitrarily small)

S(pBiLt) = Llplp, B;£t);s] = /0 e (p, B kt) dt (32)

o _st > (it > —stik
= —_ t" dt
/0 ‘ %k'r(pkw Zk'rpk+ﬂ/ ‘

1 o= (xs 1)k 1
el ,Z ( S ) :7Ep’ﬂ(:|:s_1)7 p>0, /BEC,

et T(pk + B) s

where + denotes the juxtaposition of a function (¢) with its Laplace transform
$(s), and

o0 k
z

is the generalized Mittag-Leffler function. In this case the resulting Laplace trans-
form turns out to be analytic, vanishing at infinity and exhibiting an essential
singularity at s = 0.

For —1 < p < 0 the just applied method cannot be used since then the Wright
function is an entire function of order greater than one. The existence of the
Laplace transform of the function ¢(p,5; —t), t > 0, follows in this case from
Theorem 2.1.3, which says us that the function ¢(p, 5; z) is exponentially small
for large z in a sector of the plane containing the negative real semi-axis. To get
the transform in this case we use the idea given in Mainardi [23]. Recalling the
integral representation (2) we have (—1 < p < 0)

oy = T sty g dr = [ et L [t 8
b0, —1) /0 e~ (p, B; —t) dt /0 ./Hae 7 d¢ dt

21
1 0 _
= — eCC_B/ e+ gt de (34)
271 Ha 0
1 es¢?

e _— d e E, o —
2 Ho S 4 Cfp C .0 P( 3)7
again with the generalized Mittag-Lefller function according to (33). We use here
the integral representation (see Djrbashian [2], Gorenflo and Mainardi [10])

¢ra—B
Eop(2) = 1/ il d¢, (35)

27t Jy, C* — 2

which is obtained by substituting the Hankel representation (3) for the reciprocal
of the gamma function into the series representation (33).

The relation (34) was given in Djrbashian and Bagian [4] (see also Djrbashian
[3]) in the case 8 > 0 as a representation of the generalized Mittag-Leffler function
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in the whole complex plane as a Laplace integral of an entire function and without
identifying this function as the known Wright function. They also gave (in slightly
different notations) the more general representation

oo
_ o
Eo, .8, (2) = / Eoy 8 (Ztal)tﬁl 1¢(”a2/ala B2 — B1 _aj ;—t)dt,
0

0 <oy <ai, B1,82>0.

An important particular case of the Laplace transform pair (34) is given by

M(t;8) + Es(—s), 0< B <1, (36)
where M (t; 8) is the Mainardi function given by (28) and
o0 k
z
Ea(2) = Bap(2) =Y o, @
(2) 1(2) 2 T(ak 1 D a>0 (37)

is the (standard) Mittag-Leffler function. The formula (36) contains, in particular,
the well-known Laplace transform pair

M(t;1/2) = % exp(—t%/4) + Eyjo(=s) = exp(s?) erfc(s), s € C.

Using the relation oo dn
/0 t" f(t)dt = ll_r%(—l) @E[f(t);s],

the Laplace transform pair (34) and the series representation of the generalized
Mittag-Leffler function (33) we can compute all the moments of the Wright func-
tion ¢(p, B;—t), —1 < p < 0in R™:

n!

I'(—pn+ 8 —p)

For the Mainardi function M (¢;5), 0 < 8 < 1 we obtain from this formula the
normalization property in R™ (n = 0)

/OOM(t;,B)dtzl
0

/ t"o(p, B;—t)dt = , neNy=1{0,1,2,...}.
0

and the moments in the form

* o ' B n!
/O UM (138) dt = s

Now we introduce the function (Mainardi [23])
which is connected with the function M (z;3) by the relation

, neN.
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F(z;8) = BzM(2; B). (39)
For this function we can prove the relation
L8 pA -5 s
S FONTB) = g M5 8) + exp(=As”), 0 < S <1, A>0. (40)

Indeed, following Mainardi [23] and using the integral representation (2) we get

_ 1 st—2\sB 1 _\—B¢B
L7 exp(=Xs7);1] = 5 estA ds:zm/H Mg (41)
1 _ BA _
= P B;ﬂ)ZWHM(M 5.8).

The Laplace transform pair (40) was formerly given by Pollard [33] and by Mikusinski
[27].
By applying the formula for differentiation of the image of the Laplace trans-
form to (40) we get the Laplace transform pair useful for our further discussions:
1
P
In the general case, using the same method as in (41), we get (see Stankovié
[39]) the Laplace transform pair

t5_1¢>(p,6; —AtP) + sP exp(—As™?), =1 <p<0, A>0.

MOP,8) + P Lexp(—=As®), 0 <8< 1, A>0. (42)

Stankovié [39] also gave some other Laplace transform pairs related to the Wright
function including
VT

] 1 ]
5000, 8 —t8) = YT hg(2, PE L

§,T, 27’)575), -1 <p<0,
t=P exp(—t~* cos(pm)) sin(Br—t P sin(pr))+7sP " Lp(p, B; =), —1 < p < 0, B < 1.

2.4. The Wright function as an entire function
of completely regular growth

The fact that the function (1) is an entire function for all values of the pa-
rameters p > —1 and 8 € C was already known to Wright (Wright [42], [44]).
In the paper Djrbashian and Bagian [4] (see also Djrbashian [3]) the order and
type of this function as well as an estimate of its indicator function were given
for the case —1 < p < 0. Wright [44] also remarked that the zeros of the function
(1) lie near the positive real semi-axis if —1/3 < p < 0 and near the two lines
argz = :i:%7r(3p +1)if —1 < p < —1/3. In this paper we continue the investiga-
tions of the Wright function from the viewpoint of the theory of entire functions.
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We give exact formulae for the order, the type and the indicator function of the
entire function ¢(p, 3;z) for p > —1, B € C. On the basis of these results the
problem of distribution of zeros of the Wright function is considered. In all cases
this function is shown to be a function of completely regular growth.

The order and the type of the Wright function are obtained in a straightfor-
ward way by using the standard formulae for the order p and the type o of an
entire function f(z) defined by the power series f(z) =3 7o cnz"

. nlogn 1 .
=limsup —————, (oe /P = lim sup n¥/? /¢
P =l g1 [eay” (OP) T = s e

and the Stirling asymptotic formula
[(z) = V2122 Y221+ O(1/2)], |argz| <7 —¢, € >0, |z] = co.

We thus obtain the following result.

THEOREM 2.4.1. The Wright function ¢(p,5;z), p > —1, 8 € C (8 #
—-n, n = 0,1,... if p = 0) is an entire function of finite order p and the type
o given by

1 __p
= o=(1 Thp, 4
P=17,° (14 p)lpl T+ (43)

REMARK 2.4.1. In the case p = 0 the Wright function is reduced to the
exponential function with the constant factor 1/T°(5), which turns out to vanish
identically for 8 = —n, n = 0,1,.... For all other values of the parameter 3 and
p = 0 the formulae (43) (with o = ;iil[l)(l + p)|p|_?pp = 1) are still valid.

The basic characteristic of the growth of an entire function f(z) of finite order
p in different directions is its indicator function h(#), |#] < m defined by the
equation
lo 0
h(6) = lim sup ‘&L (44)
r—+oo TP
To find the indicator function h,(@) of the entire function ¢(p, 8; z) of finite order
p given by (43) its asymptotics given in Section 2.1 are used. By direct evaluations
we arrive at the following theorem.

THEOREM 2.4.2. Let p > -1, 8 € C (8 # —n, n = 0,1,... if p = 0).
Then the indicator function h,(8) of the Wright function ¢(p, B; z) is given by the
formulae

ho(#) = ocospl, |8] <m (45)
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in the case p > 0,

—ocosp(m+8), —7w<

<0,
—ocosp(f —7), 0< T

(46)

in the cases (a) —1/3 < p < 0, (b) p = -1/2, 8 = —n, n = 0,1,... and (c)
p=-1/2, 8=1/2—n, n=0,1,...,

—ocosp(m +6), —WSOS%%—TF,
hy(8) = < 0, 6] <7 -3, (47)
—ocosp(f — ), w—%%gﬁgﬂ

in the case -1 < p< —-1/3(B# —n, n=0,1,...and 8 #1/2—n, n=0,1,...
if p = —1/2), where p and o are the order and type of the Wright function,
respectively, given by (43).

REMARK 2.4.2. It can be seen from the formulae (45), (46) that the indicator
function h,(8) of the Wright function ¢(p, 8; z) is reduced to the function cos 6 —
the indicator function of the exponential function e* — if p — 0. This property
is not valid for another generalization of the exponential function — the Mittag-
Leffler function (37). Even though

E] (Z) = ez,

the indicator function of the Mittag-Lefler function given for 0 < o < 2, a # 1
by ([6, Chapter 2.7])

_ [ cosB/a, |0|§%,
h(e)_{O, T <

does not coincide with the indicator function of e* if @ — 1.

We consider now the problem of distribution of zeros of the Wright function
in the case p > —1, 8 € R.. To get the asymptotics of zeros of the Wright function
we use its asymptotic expansions (4), (6), (13), (15), (18), (19) and the method
applied by M.M. Djrbashian in [2, Chapter 1.2] to solve the problem of distribution
of zeros of the generalized Mittag-Leffler function E, ,(z). This method consists in
finding the asymptotics of zeros of the main terms of the asymptotic expansions,
applying the Rouché theorem to show that the function under consideration and
the main terms of its asymptotic expansions have the same number of zeros inside
of specially chosen contours and after that in estimation of the diameter of the
domains bounded by the contours. The proofs of the results given below are
straightforward but have many technical details and are omitted in this paper. It
turns out, that in dependence of the value of the parameter p > —1 and the real
parameter 3, there are five different situations:
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1) for p > 0 all zeros with large enough absolute values are simple and are
lying on the negative real semi-axis;

2) in the case p = 0 the Wright function becomes the exponential function
with a constant factor (equal to zero if 8 = —n, n =0,1,...) and it has no zeros;

3) for —1/3 < p < 0 all zeros with large enough absolute values are simple
and are lying on the positive real semi-axis;

4) in the cases p = =1/2, 8= -n, n=0,1,...and p= —-1/2, B =1/2 —
n, n=0,1,... the Wright function has exactly 2n + 1 and 2n zeros, respectively;

5) for —1 < p < —1/3 (excluding the case 4)) all zeros with large enough
absolute values are simple and are lying in the neighbourhoods of the rays arg z =
+im(—1—3p).

We now give the precise results.

THEOREM 2.4.3. Let {7;}{° be the sequence of zeros of the function ¢(p, 5; z),
p>—1/3, p#0, B €R, where || < |vk+1| and each zero is counted according
to its multiplicity. Then:

A. In the case p > 0 all zeros with large enough k are simple and are lying on
the negative real semi-axris. The asymptotic formula

<7rk+7r(p6— p%l)
Y= —

P
1+0(k )}, k— +oo 48
osinmTp ) {1+0G¢:7)}, * (48)
is true. Here and in the next formulae p and o are the order and type of the
Wright function given by (43), respectively.
B. In the case —1/3 < p < 0 all zeros with large enough k are simple, lying
on the positive real semi-azxis and the asymptotic formula

—osin7wp

p—1 P
v = <”k+”(pﬂ_ 2 )> {1+0(k™)}, k— +oo (49)

18 true.

REMARK 2.4.3. Combining the representation (20) with the asymptotic for-
mula (48) we get the known formula (see, for example [40, p.506]) for asymptotic
expansion of the large zeros 7 of the Bessel function J,(z):

1 1
rp = w(k+ i Z) +0(k™Y), k= 0.

REMARK 2.4.4. In the cases p = —1/2, 8 = —n, n =0,1,... and p =
-1/2, 8 =1/2—n, n=0,1,... the Wright function can be represented by the
formulae (30), (31) and, consequently, has exactly 2n + 1 and 2n zeros in the
complex plane, respectively.
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It follows from the asymptotic formulae (11), (16) and (19) that all zeros of
the function ¢(p, 8;2z) in the case —1 < p < —1/3 with large enough absolute
values are lying inside of the angular domains

< e} R

Qgi) = {z: argz F <7r— 3—7T>
2p
3 3w )

where € is any number of the interval (0, min{m — % 2p Consequently, the
function ¢(p, 5; z) has on the real axis only finitely many zeros. Let

e e® ={z: §>0} (e ={z: <0}

be sequences of zeros of the function ¢(p, 5; z) in the upper and lower half-plane,
respectively, such that |fy,(g+)| < |fy](:r)1|, |fy,(g_)| < |fy](c:r)1|, and each zero is counted
according to its multiplicity.

THEOREM 2.4.4. In the case —1 < p < —1/3 (8 # —n, n = 0,1,... and
B#1/2—n, n=0,1,...if p=—1/2) all zeros of the function ¢(p,5;z), B € R
with large enough k are simple and the asymptotic formula

1
N Ei(r=3T) (27”“> P {1 L0 (1oik> } k= 400 (50)

g

is true.

Summarizing all results concerning the asymptotic behaviour of the Wright
function, its indicator function and the distribution of its zeros, we get the theo-
rem.

THEOREM 2.4.5. The Wright function ¢(p, 8;z), p > —1 is an entire function
of completely regular growth.

We recall ([18, Chapter 3]) that an entire function f(z) of finite order p is called
a function of completely regular growth (CRG-function) if for all 8, |8| < 7, there
exist a set Fg C R4 and the limit
L log] f(re®)
im

r—+4oco rP

M
rEEe

; (51)

where

E
Ef=R,\ Ey, lm mestg—ﬂ((),r):()‘

r—+o0 T

It is known ([6, Chapter 2.6]) that zeros of a CRG-function f(z) are regularly
distributed, namely, they possess the finite angular density
0
im M08 g, (52)

r—+oo rP



ANALYTICAL PROPERTIES AND APPLICATIONS ... 399

where n(r, ) is the number of zeros of f(z) in the sector 0 < argz < 0, |z| < r and
p is the order of f(z). From the other side, the angular density v() is connected
with the indicator function h(#) of a CRG-function. In particular (see [6, Chapter
2.6]), the jump of h'(#) at 0 = 6 is equal to 27pA, where A is the density of zeros
of f(z) in an arbitrarily small angle containing the ray argz = 6.

In our case we get from Theorem 2.4.2, that the derivative of the indicator
function of the Wright function has the jump 2opsinmp at 8 = 7 for p > 0, the
same jump at # = 0 for —1/3 < p < 0, and the jump op at 6 = +(7w — %—g)
for -1 < p<-1/3(B# —n, n=0,1,...and 8 #1/2—-n, n =0,1,... if
p = —1/2), where again p and o are the order and type of the Wright function,
respectively, given by (43); if p =0 or p = —1/2 and either 5= —n, n=0,1,...,
or § =1/2—n, n = 0,1,..., the derivative of the indicator function has no
jumps. As we see, the behaviour of the derivative of the indicator function of
the Wright function is in accordance with the distribution of its zeros given by
Theorems 2.4.3, 2.4.4 and Remark 2.4.4 as predicted by the general theory of the

CRG-functions.

3. Some applications of the Wright function
3.1. Asymptotic theory of partitions

Historically the first application of the Wright function was connected with the
asymptotic theory of partitions. Extending the results of Hardy and Ramanujan
about asymptotic expansion of the function p(n), n € N, the number of parti-
tions of n, Wright [41] considered the more general problem, namely, to find an
asymptotic expansion for the function pg(n), n € N, the number of partitions of
n into perfect k-th powers. Following Hardy and Ramanujan, Wright considered
the generating function fo%r the sequence {pg( L)), pr(2), ...} which is given by

@ =T -2 =1+ peln)2", |2 < 1.
=1 n=1

Then
) pr(n) = L[ fle)ds

2w Jo 2t
the contour C being the periphery of the circle with center in the point z = 0 and
radius r = 1 — % Let the contour be divided into a large number of small arcs,

each associated with a point '
ap,q = exp(2pmi/q), p,q € N.

Taking the arc associated with a1 = 1 as typical, it can be shown that on this
arc the generating function fi(z) has the representation

=

exp (DL 4/

(log(1/2))1/* ) , z— 1,  (53)

27 1
Je(z) ~ W <log ;)
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where j is a real number depending on k and ((z) is the Riemann zeta-function.
Then, on this arc, fx(z) is approximated to by an auxiliary function Fj(z), which
has a singularity at z = 1 of the type of the right-hand side of (53). If the z-plane
is cut along the interval (1, 00) of the real axis, Fi(z) is regular and one-valued for
all values of z except those on the cut. The power series for Fj(z) has coefficients
given in terms of the entire function ¢(p, 8; z) and, by using this power series, an
asymptotic expansion can be found for pg(n).

In the paper [41] Wright gave some properties of the function ¢(p, 8; z) in the
case p > 0, including its asymptotics and integral representation (2). He proved
on this base the following two theorems.

THEOREM 3.1.1. Let o, 8, € C, a#0, p>0, me N, m > R(y),

[e @]

F(z) =F(p,a,B,7;2) = > _ (n—7)""¢(p, 8 (n — )") 2" (54)

n=m

If a cut is made in the z-plane along the segment (1,00) of the real axis, then
F(z) is regular and one-valued in the interior of the region thus defined.

THEOREM 3.1.2. Let
G(z) = F(z) — x(2),
where F(z) is defined by (54) and

0= Ggiirae = (i)

If a cut is made in the z-plane along the segment (—o0,0) of the real axis, then
G(z) is regular and one-valued in the interiour of the region thus defined.

We see that the function F(x) has a singularity of the type of x(z) at z = 1.
In the case of the function Fj(z) used to get an asymptotic expansion for the
function pg(n) the values

1 1 1 1 1
oo =D+ )0+

p= p k),

should be taken in the previous two theorems.

3.2. Fractional diffusion-wave equation

Another field in which the Wright function plays a very important role is that
of partial differential equations of fractional order. Following Gorenflo, Mainardi
and Srivastava [14] and Mainardi [20]-[23] we consider the fractional diffusion-
wave equation which is obtained from the classical diffusion or wave equation by
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replacing the first- or second-order time derivative by a fractional derivative of
order v with 0 < o < 2:

0%u(z,t) _ D82u(az,t)

ot* oz? 7

D>0, 0<a<2. (55)

Here the field variable v = u(x,t) is assumed to be a causal function of time, i.e.
vanishing for ¢t < 0, and the fractional derivative is taken in the Caputo sense:

0"u(z,t) B
Pu(et) ) o e a=ncN, 5
@ 1 nea-10"u(z, T
o mof(t_T) 1Wd7, n—1<a<n.

We refer to the equation (55) as to the fractional diffusion and to the fractional
wave equation in the cases 0 < & < 1 and 1 < a < 2, respectively. The difference
between these two cases can be seen in the formula for the Laplace transform of
the Caputo fractional derivative of order o (see Mainardi [23]):

n—1
9%u(z. L Ou(z,t
gi—i ) & iz, ) — > stk Ié(takj— o, n—1<a<n, neN. (57)
k=0

Extending the conventional analysis to the equation (55), and denoting by g(z)
and h(z) two given, sufliciently well-behaved functions, the basic boundary-value
problems can be formulated as follows (0 < a < 1):

a) Cauchy problem
u(z,0+) = g(z), —o00 <z < +o0; u(Foo,t) =0, t > 0; (58)
b) Signalling problem
u(z,04) =0, z>0; u(0+,t) =h(t), u(+oo,t) =0, t > 0. (59)

If 1 < o < 2 the initial values of the first time-derivative of the field variable,
@(x,04), should be added to to the conditions (58) and (59). To ensure the
continuous dependence of the solutions on the parameter « in the transition from
a =1- to a =14, we agree to assume u(z,04+) = 0.

Since these problems are well studied in the cases « = 1 and « = 2 we restrict
ourselves in the further considerations to the case 0 < v < 2, « # 1. For the sake
of convenience we use the abbreviation

B=13, (60)
which implies 0 < 8 < 1.
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Let us introduce the Green functions G.(z,t; 8) and Gs(z,t; 8) for the Cauchy
and signalling problems for the equation (55), respectively, which represent the
fundamental solutions of these problems (with g(z) = é(x) in (58) and h(t) = 4(¢)
in (59)). Using the Green functions, the solutions of the two basic problems can
be given, respectively, by

+oo
w(w, ;) = / Golw — &,t; B)g(€) de, (61)

u(z,t;8) = Ot Gs(z,t — m; 8)h(T)dT. (62)

To get the Green functions G.(x,t; 8) and Gs(x,t; 3) the technique of the Laplace
transform is used. We consider at first the Cauchy problem (58) for the equation
(55) with g(z) = Ge(z,04+:;8) = 6(z) (and G.(z,0+;8) = 0if 1/2 < B < 1).
Denoting the Laplace transform of the Green function by Qc(x, s; 8) and using the
formula (57) we arrive after application of the Laplace transform to the Cauchy
problem {(55), (58)} to the non-homogeneous differential equation

d*Ge
dz?

with the boundary conditions

D — %G, = —6(2)s¥#7L, —00 <z < 400 (63)
Ge(Fo0,5;8) = 0. (64)
The problem {(63), (64)} has a solution (see, for example, Mainardi [23])
o
2D sl-5

Comparing this relation with the Laplace transform pair (42) we represent the
Green function for the Cauchy problem {(55), (58)} in the form

e~ (=/VD)F o < 1 < 0. (65)

Gelz, 5, 8) =

r

2v/D|z|

Ge(z,t; 8) = M(r/VD;B), t >0, (66)

where
r=|z| =7

is the similarity variable and M (z; §) is the Mainardi function (28) given in terms
of the Wright function.
For the signalling problem {(55), (59)} (with h(t) = (¢)) the application of
the Laplace transform leads to the homogeneous differential equation
d*G,
dz?
with the boundary conditions R
Gs(0+,5;8) =1, Gs(+00,5; 8) = 0. (68)

D — %G, =0, 2>0 (67)
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Solving this equation, We~obtain
Go(m,5,8) = e VDS 4>, (69)

Using the Laplace transform pair (40) we get the Green function Gs(x,t; ) for
the signalling problem {(55), (59)} in the form

Gole,t;8) = - M(r/VD:B), t 50, >0, (70)

VDt
where
r=at? (71)

is the similarity variable and M (z; ) is the Mainardi function (28).

For more results in FPDE we refer, for example, to Engler [5], Fujita [7],
Gorenflo and Mainardi [11], [12], Mainardi [20]-[23], Podlubny [32], Priiss [34],
Saichev and Zaslavsky [35], Samko et. al. [36], Schneider and Wyss [37] and by
Wyss [45].

Some applications of FPDE have been considered in papers by several authors
including Giona and Roman [9], Hilfer [15], Mainardi [21], Metzler et al. [26],
Nigmatullin [28], Pipkin [31], Podlubny [32].

3.3. Scale invariant solutions of FPDE

Let us consider the abstract equation
Flu) = 0, u=u(z,t). (72)
First we give some definitions concerning the similarity method.

DEFINITION 3.3.1. A one-parameter family of scaling transformations, de-
noted by T), is a transformation of (z, ¢, u)-space of the form

T =Mz, =X\t 0= \u, (73)

where a, b, and ¢ are constants and X is a real parameter restricted to an open
interval I containing A = 1.

DEFINITION 3.3.2. The equation (72) is invariant under the one-parameter
family T of scaling transformations (73) iff 75 takes any solution u of (72) to a
solution 4 of the same equation:

i =Tw and F(@) = 0. (74)

DEFINITION 3.3.3. A real-valued function n(z,¢,u) is called an invariant of
the one-parameter family T), if it is unaffected by the transformations, in other

words:
n(Ta(z,t,u)) = n(x,t,u) forall Xel.
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On the half-space {(x,t,u) : £ > 0, ¢ > 0}, the invariants of the family of
scaling transformations (73) are provided by the functions (see [29])

a/b

m(z,t,u) = zt=Y%, no(z, t,u) = 7. (75)

If the equation (72) is a second order partial differential equation of the form
G(z, t, u, ug, U, Upg, U, Ugt) = 0, (76)
and this equation is invariant under T}, given by (73), then the transformation
w(z,t) = t%v(z), z = xt™° (77)

reduces the equation (76) to a second order ordinary differential equation of the
form

g(z, v, V', V") = 0. (78)

For a proof of this fact we refer in the case of general Lie group methods to [29)].
In some cases it can be easily checked directly.

Recently, the scale-invariant solutions for the equation (55) (with the frac-
tional derivative in the Caputo and Riemann-Liouville sense) and for the more
general time- and space-fractional partial differential equation (with the Riemann-
Liouville space-fractional derivative of order § < 2 instead of the second order
space derivative in the equation (55)) have been obtained by Gorenflo, Luchko
and Mainardi [13], Buckwar and Luchko [1] and Luchko and Gorenflo [19], re-
spectively. In all cases these solutions have been given in terms of the Wright
and the generalized Wright functions. Here we present some results from these
papers.

At first we determine a group of scaling transformations for the fractional
diffusion-wave equation (55) on the semi-axis (z > 0) with the Caputo fractional
derivative given by (56). We have in this case the following theorem.

THEOREM 3.3.1. Let Ty be a one parameter group of scaling transformations

for the equation (55) of the form Ty o (x,t,u) = (Az, A°, \°u). Then,

b= 2 (79)

1o
and the invariants of this group T\ are given by the expressions
m(z,t) = 2t~V = gt72 my(x,t,u) =t 0u = t (80)

with a real parameter v = ca/2.



ANALYTICAL PROPERTIES AND APPLICATIONS ... 405

REMARK 3.3.1. We note that the first scale-invariant 7; of (80) coincides
with the similarity variable (71) which was used to define the Green function of
the signalling boundary-value problem for the equation (55). It is a consequence
of the fact that the equation (55) is invariant under the corresponding group of
scaling transformations.

It follows from the general theory of Lie groups and the previous theorem that
the scale-invariant solutions of the equation (55) should have the form

u(z,t) = o(y), y = xt~*/2 (81)

Furthermore, the general theory says that the substitution (81) reduces the par-
tial integro-differential equation (55) into an ordinary integro-differential equation
with the unknown function v(y).

THEOREM 3.3.2. The reduced equation for the scale-invariant solutions of the
equation (55) of the form (81) is given by
(B ) (y) = D" (y), y >0, (82)

where the operator in the left-hand side is the Caputo type modification of the left-
hand sided Erdélyi-Kober fractional differential operator defined for 0 < §, n—1 <
a<néeN by

n—1
(«P{%g)(y) == (K™ H(r +j— %u%)g)(y), y > 0. (83)
7=0

Here

ﬁ floO(u N 1)a—1u—(7+a)g(yu1/5) du, a>0,

(K5 %g)(y) = { (84)

9(y), a=0

is the left-hand sided Erdélyi-Kober fractional integral operator.

REMARK 3.3.2. As it follows from the definitions of the Caputo type modi-
fication of the Erdélyi-Kober fractional differential operator (83) and the Erdélyi-
Kober fractional integral operator (84) in the case &« = n € N, the equation (82)
for the scale-invariant solutions is a linear ordinary differential equation of order
max{n,2}. In the case & = 1 (the diffusion equation) we have

(PP) = (1= qug o)
and (82) takes the form .
Do (2) + Syv'(y) — yoly) = 0. (85)

In the case @ = 2 (the wave equation) we get
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(P (y) = (’v—l—y%)(’y—y%)v(y)

= y*"(y) — 2y = Dyv'(y) +v(v = D(y)
and (82) is reduced to the ordinary differential equation of the second order:

(* = D)"(y) = 2(y — )y (y) +v(v — Lw(y) = 0. (86)

The complete discussion of these cases one can find, for example, in [29]. The
case « =n € N, n > 2 was considered in [1].

Solving the equation (83) we get the following theorems.

THEOREM 3.3.3. The scale-invariant solutions of the fractional diffusion equa-
tion (55) (0 < & < 1) have the form

u(,t) = Gt ¢35, 1+ 7= —) (87)
in the case —1 <y, v# 0, and
8%
ul(z,t) = 01¢(—§,1;—%) +Cy (88)

in the case y = 0, where y = xt~ % is the first scale invariant (80) and Cy,Cy are
arbitrary constants.

THEOREM 3.3.4. The scale-invariant solutions of the fractional wave equation
(55) (1 < a < 2) have the form

y—1
Do o y
vy 2% & L9
+ CQi( 5 (=5 1+ ﬁD)
2421=1L 2
YT e g vy
) ((—a,2 —a),(2,3+2 - )’D)>’

inthecase l —a<y<1l, y#1—5, v#0, and

u(a,t) = C1g(~3, 1;—%) (90)
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in the casey = 0, wherey = xt ™7 is the first scale invariant (80), ¢((u,a), (v,b); )
is the generalized Wright function given by (u+v > 0)

i~ k

z
¢((p,a), (v,b); 2 kZ:OP @ttty MUER abeC (91)

and C1,Cy, Cq are arbitrary constants.

For the elements of the theory of the generalized Wright function (91) includ-
ing its integral representations and asymptotics we refer to Wright [43] in the case
w,v > 0 and to Luchko and Gorenflo [19] in the case of one of the parameters
W, v being negative.

We consider now the equation (55) on the semi-axis > 0 with the fractional
derivative in the Riemann-Liouville sense:

0"u(zx,t) B
oue) [ o omnen.
o mﬁg_{ e lu(z,T)dr, n—1<a<n.

Also in this case the scale-invariants of a one parameter group 7 of scaling trans-
formations for the equation (55) of the form T o (z,t,u) = (Az, A%, A\°u) are
given by Theorem 3.3.1.

Following Buckwar and Luchko [1] we restrict ourselves in the further dis-
cussion to the case of the group T) of scaling transformations of the form 7’ o
(z,t,u) = (\z, A%, u). Then the scale-invariant solutions of the equation (55)
with the Riemann-Liouville fractional derivative (92) have the form

u(z,t) = v(y), y =2t~ */? (93)

and the substitution (93) reduces the partial integro-differential equation (55) into
an ordinary integro-differential equation with the unknown function v(y) given by
the following theorem:.

THEOREM 3.3.5. The reduced equation for the scale-invariant solutions in the
form (93) of the equation (55) with the Riemann-Liouville fractional derivative
(92) is given by

(Py%)(y) = Dv"(y), y > 0 (94)

with the left-hand sided Erdélyi-Kober fractional differential operator P;** defined
for0<d, n—1<a<néeN by

n—1

o) = | [T+ 50000 | (K70, y>0.  (99)
j=0
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Here (K{"“g)(y) is the left-hand sided Erdélyi-Kober fractional integral operator
(84).

The solutions of the equation (94) have been given by Buckwar and Luchko
[1] for @ > 1.

THEOREM 3.3.6. The scale-invariant solutions of the equation (55) with the
Riemann-Liouville fractional derivative (92) in the case 1 < « < 2 have the form
(y = xt—/?)

'U,(.’E,t) = v(?/) = Cl¢(_%a 17 —y/\/ﬁ) + CZ¢(_%a 17y/\/5) (96)

with arbitrary constants C1, Cos.

Now we consider the case o > 2:

THEOREM 3.3.7. The scale-invariant solutions of the equation (55) with the
Riemann-Liouville fractional derivative (92) in the case &« > 2, « ¢ N have the
form (y = xt=*/?) :

_2 ;
u( ZC Y~ 1+] U, |:(1’1)a Ei_;(;)+j)a2);py—2] , (97)

where C;, 0 < j < [a] are arbitrary constants and ,¥, [(?gl”gl))’""((ba”;g);z] is the
, ,B1)...(bg,Bg

generalized Wright function (see [38]):

P\I/q |:(a1’A1) (aP’ ; :| i Zq al A k) (98)
k=

(b1, B1) .. (bq,B I'(b; + Bik) k!

l

In the case 2 < & = n € N we have the following result.

THEOREM 3.3.8. The scale-invariant solutions of the partial differential equa-
tion (2<n e N)
871
ot
have the form (y = x/t"/?) :

=Dugy, t >0, 2>0, D>0

n—2 2 :
_ ) _2+%(1+]') U (1,1), (2_ ﬁ(1+.7)72), -2
) ]'E:() Cjy 2 ¥y (n— Fm) Dy~ +Cn1 (99)

with arbitrary constants C;, 0 < j <n — 1.
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Finally, following Luchko and Gorenflo [19], we consider the time-and space-
fractional partial differential equation
0%u{x, t) Pu(z,t)
=D T t D 1
5 EI z>0,t>0, D>0, (100)

where both fractional derivatives are defined in the Riemann-Liouville sense (92).

THEOREM 3.3.9. The invariants of the group T of scaling transformations
under which the equation (100) is invariant are given by the expressions
m(z,t,u) = zt=? no(z,t,u) =t Tu (101)

with an arbitrary constant -y.

THEOREM 3.3.10. The transformation
u(z,t) = tu(y), y = zt=/P (102)

reduces the partial differential equation of fractional order (100) to the ordinary
differential equation of fractional order of the form

(P30~ v)(y) = Dy~ ?(D77P0)(y), v >0. (103)

Here the left-hand sided Erdélyi-Kober fractional differential operator P{** is
given by (95) and the right-hand sided Erdélyi-Kober fractional differential oper-
atong’ﬂ is defined for 0 < 8, n— 1< B3<n €N by

n

. 1 d S
(O w) = | [T +i+ 5950 | G 9w, y>0,  (104)
j=1
with the right-hand sided Erdélyi-Kober fractional integral operator
W) T g(yu®) du, 8>0

gy Jo (1 :
I79)(y) : 0 105
(L5 9)(y) = { o(o) 50, (105)

Solving the reduced equation we arrive at the following theorem.

THEOREM 3.3.11. Let

§§a<6§2, n—1<pg<neN.

Then the scale-invariant (according to the transformation (102) with v > 0) so-
lutions of the partial differential equation of fractional order (100) have the form

ulz,t) =17 Cjuj(y), y=at™/, (106)
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where

vi(y) = ¥* I p((~a, 1+ —a+ %j% B, 1+B—5):9%/D),  (107)

the Cj, 1 < j < n are arbitrary real constants, and ¢((u,a),(v,b);z) is the
generalized Wright function given by (91).

REMARK 3.3.3. In the case 8 = 2 the scale-invariant solutions of the equa-
tion (100) can be expressed in terms of the Wright function. Indeed, let us consider
the linear combinations of the solutions (107) with y = xt~%/2

w(@,t) = £1(VDui(y) + va(y) = £'¢(=5, 1+ 7;9/VD),

ws(z,8) = #1(=VDur(y) +va(y)) = 16(= 5,1+ 7 —y/VD).

These scale-invariant solutions are given in Theorem 3.3.6 in the case v = 0.

REMARK 3.3.4. For 0 < 8 < 1 the equation (100) has only one solution
which is scale-invariant with respect to the transformation (102). This solution
has the form (y = at~/#) :

(8%
'LL(.’I?, t) = t’yvl(y) = t’yyﬁ_l ¢((—a7 1+ Y-« + =

In the case 8 = 1, this function is expressed in terms of the Wright function
(y =at™*):
u(z,t) = v (y) = ¢(—a, 1+ v;y/D).
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