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Abstract

In this work I intend to emphasize the importance of the Fourier trasform in
the imaging analysis, to do so I’ll bring some examples of trasformations in the
frequency domain.

First of all, I will put the focus on the definition of the Fourier transform in its
different notations and its most important properties.

Then I'll bring some examples of the calculation of the operator on simple func-
tions, in both one and two dimensions,through the use of the software Matlab .
Finally I 1l show one of the applications of the transform in the imaging anal-
ysis, underlining its advantages over the work in the spatial domain.

Chapter 1
Definition of the Fourier trasform

The Fourier transform is widely used in the analysis of dynamical systems, in
solving differential equations and signal theory.

The reason for such a wide use resides in the fact that it is a tool that allows
to decompose and subsequently recombine a generic signal into an infinite sum
of sinusoids with different frequencies, amplitudes and phases.

The function obtained by the Fourier transform, continuous or discrete, is said
amplitude spectrum and represents how wide are the harmonics that compose
the original function.



If the signal in question is a periodic signal, its Fourier transform is a dis-
crete set of values, which in this case takes the name of discrete spectrum, and
so you need to use the discrete Fourier transform (DTF) to switch from the
spatial domain to the frequency one.

Instead, if the function is not periodic the spectrum is continuous and to change
the domain you will have to use the integral form of the transform which is de-
fined by:
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with f (t) € Ly (—o0,+00) and t,w € R.
Reversing the formula, it can be derived the definition of the inverse Fourier
trasform:
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These are the general definitions of the forward transform and its inverse, but
there are different notations depending on the choice of the constants A, B and
the exponential term.
All notations are obviously equivalent but it is worth remembering that different
authors may use different choices and so you always need to clear what formula
of the Fourier transform you are using.
An exemples is the definition widely used in probability theory:
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Another notation is used in quantum mechanics:
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And at last, the definition most used in imaging analysis:
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This last notation is obtained by interpreting w as a pulse, so that w = 27v.
The equations of the theory of probability thus become:
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Chapter 2
Property of the Fourier trasform

The reason why it is convenient to work in the frequency domain rather than
the spatial one, is that the Fourier transform has properties which make certain
operations much simpler.

To do an exemple in the imaging analysis, the operation of convolution becomes
a simple multiplication when we work in the frequency domain.

The most important properties are the following:

1. Linearity:

Flaf (t) + bg (¢)] = aF (w) + bG (w) (11)

2. Complex conjugate:

FI®|=Fw) (12)
3. Traslation:
Ff (¢ —to)] = F (w) e (13)
4. Scaling:
Pl )] = 117 (%) (14)
5. Derivation:
F |5 f 0] = i) F @) (15)



6. Convolution:

FIf ()9 (0] = 1 F ()G (@) (16)

Where the convolution is defined by:

+oo
f0x9= [ r@et-nar (1)
—00
This operation is widely used in the imaging analysis in its discrete form, for
exemples to apply filters: each image is in fact a matrix of numbers representing
the brightness of the respective pixels, apply a filter in the spatial domain means
actually making the convolution between the image matrix and the one which
represents the filter (called kernel).
This is therefore a first great advantage of the Fourier transform, as for a com-
puter, the convolution operation is much more complex than a simple multipli-
cation, especially from a computational point of view: if you must apply filters
with large kernel, working in the frequency domain can significantly reduce the
execution time of the program.



Chapter 3
Calculation of the Fourier transform in one
dimension

Before showing the representation of the Fourier transform of some image, it is
helpful to see how to calculate the transform of simple function in one dimension
and to do so we will use the notation of probability theory (Equation 3).

The first case is the rectangle function defined by:

A |t| <L,
r(t) = - 18

®) {0 [t| > L. (18)
If we set A = 1 and L = 2 the function becomes a step of height 1 and width 4:

Rectangle function
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Figure 1: Graphic of the rectangle function, r(t).

The Fourier transform of the rectangle function is:
R(w) = 2AL - sinc(wl) (19)

To prove this formula just use the Euler equation and remember that the integral
of an odd function over a symmetric range respect to the origin is zero.
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= / Alcos(—wt) + isen(—wt)| dt =

=A {/LL cos(wt)dt — 1 /LL sen(wt))} =

Senwr _
L

wt

= A/_LL cos(wt)dt = A {

= g [sen(wLl) — sen(—wL)] = 2AL% =

= 2AL - sinc(wl)

The graphic of this result is:

Fourier transform of the rectangle fun
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Figure 2: Graphic of the Fourier transform of the rectangle function, R(w).

The zeros of R(w) are w = T, 2{, 3%, ... and the central peak height is
R(0) = 2AL.

If you increase the half width of the rectangle function (L), R(w) will become
thinner and higher.



The second exemple is the triangle function defined by:
A—2t <L
t) = L - 20
Uy {0 [t| > L. (20)
Setting the coefficients A = 1 and L = 2, we obtain:

Triangle function
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Figure 3: Graphic of the triangle function, f(t).
The Fourier transform of the triangle function is:
L
F(w) = AL - 31'7102(%) (21)

In the demonstration we first divide the integral in the ranges —L < ¢ < 0 and
0 <t < L so you do not have the absolute value.

Next, we use integration by parts, the Euler equation and the duplication for-
mula of the cosine function.

) ) 0 ¢ ) L ¢ .
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Using the integration by parts we obtain that:

) e—iwt e—iwt
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Placing this into the equation, it becomes:
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Using the duplication formula of the cosine function:

cos(2a) = 1 — 2sen’(a)

We get:
_4A L, wL sen®(4F) | . o,wl

The graphic of the Fourier transform of the triangle function is:

Fourier transform of the triangle function
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Figure 4: Graphic of the Fourier transform of the triangle function, F(w).



The zeros of F(w) are w = 2% 4% 67 and the central peak height is

L' L L>
R(0) = AL.
If you increase the parameter L, F(w) will become thinner and higher.
The third and last case that we will see in one dimension is the Gauss function:

g(x) = U\/ﬂe*m (22)

The graphic with o = 2 is:

Gaussian function

o ! ! !
e oo e e T
T e ot S SO S S S S
T s S s S
~— i i i i i i i i i
Oy e Shasmsons Canseasn seanasms nonaiad b~ TS ALY (ISR 1
i, ot T .
0 T
s i i i i i i i i i
-10 -8 -6 -4 -2 0 2 4 b i 10

Figure 5: Graphic of the Gauss function, g(x).

The Fourier transform of the Gauss function is:

K252

Gk)=e "2

(23)

To demonstrate this result we just use the method of completing the square in
the exponent:
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The graphic of the Fourier transform of the Gauss function is:

Fourier transform of the gaussian fun
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Figure 6: Graphic of the Fourier transform of the Gauss function, G(k).

That is still a Gauss function, but now in the exponent, o? is at the numerator
instead of the denominator.

Increasing the parameter, g(x) becomes wider and lower while G(k) becomes
thinner and higher.
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Chapter 4
Representation of the Fourier transform in two
dimensions

The Fourier spectrum of an image is also an image itself, in which pixels, instead
of the brightness, there is the amplitude of the harmonic relative to the pixel.
The equation used to calculate the transform is:

M N
Flu) = e 30 3 faay)e (%) (24)
m=1n=1
And its inverse:
1 M N N uxT vy
fa) = 57y 2 2 F(u,v)e*™ (1 +5) (25)
m=1n=1

The frequencies domain can be represented with different conventions: one of
the most used is the one which places the zero at the center of the matrix.
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Figure 7: Convention of the axes in the two-dimensional Fourier spectrum.

Because of its complexity, it is very difficult to obtain quantitative information
from the display of the Fourier spectrum, however, understanding it may give
you a lot of qualitative information that can help working on the image.
Before dealing with complex images, is better to begin with some image sample
to learn how to read Fourier spectra.
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To display the transformed image it is also necessary to increase contrast as
it would otherwise be too dark because of the normalization factor.
Often a linear stretching is not enought because F(0,0), which is the average
of the gray levels of the original image f(x,y), is much brighter than the other
points.
If for example we create an image with a pattern of sinusoidal brightness along
an axis, the Fourier transform will have only three points: the central peak, the
point corresponding to the frequency of the function and the point correspond-
ing to the opposite of that frequency.

Figure 8: Image of f(z,y) = sen (%Ty) with T'= 100 and y = 1,2, ...,600, and
its Fourier spectrum.

If we rorate the image, the transform rotates with the same angle:

Figure 9: Image of f(z,y) = sen (2%%) with 7' = 100 and z = 1,2, ...,600, and
its Fourier spectrum.
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Another important example is the transform of a rectangle, in which like the
one-dimensional step where you get a sinc, in this case you get two: one along
the x-axis and the other along the y-axis.

Figure 10: Picture of a rectangle, and its Fourier transform.

To show the last spectrum, it was also necessary to make an absolute value of
the resulting image as negative values are not accepted as gray levels.
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Chapter 5
Other uses of the Fourier transform in the
images analysis

The Fourier spectrum represents therefore the harmonics presence in the orig-
inal image: according to which areas are lighted you can get an idea of the
original image.

The first thing to observe is whitch areas are illuminated: the higher the bright-
ness, the greater the presence of harmonics related to the illuminated pixels.
The second thing is the position of the illuminated zones: if they are close to the
center they represent low frequency harmonics, while if they are in boundary
regions they stand for high frequency harmonics.

This last aspect is very important because the noise of an image is always a
high frequency component, so removing the boundary regions of the spectrum
can greatly reduce the noise.

However also the objects of the image have high frequency components: the
edges:; therefore the removal of the boundary regions also makes the image
blurred (Figure 12).

Figure 12: Image 11 with a low pass filter and its Fourier transform.

14



This type of filter is especially useful when the noise is periodic, since the noise
can be distinguished in the transformed image:

Figure 14: Image 13 with a low pass filter and its Fourier transform.

Figure 15: Image 13 with a low pass filter and its Fourier transform.

The more you cut in the spectrum, the more the image is blurred, and so it may
become even worse than the original image.
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In Figure 15, you can also see a side effect of the cut in the frequency domain
called ringing, which is the generation of false edges close to the real ones and
is created by the fact that the cutting was performed with a step function.

For these reasons, the cut of the transform is not used much, while it is preferred
to use local cuts or functions more complex for the thresholding, to prevent the
creation of artifacts.

Conclusions

In this work we have shown some simple advantages in the use of the Fourier
transform in the imaging analysis: the convolution theorem, the reduction of
Gaussian noise and the periodic noise suppression. We have also demonstrated
that such advantages can however introduce side effects such as blurring or
artifacts such as ringing, effects which, however, are easily removed with the
use of appropriate filters (for example the edge enhancement filters) or using
more complex functions. Nevertheless, this work shows only a framework on
the most simple applications of the Fourier transform, the frequency domain
is in fact used in many ways in the imaging analysis, such as inverse filtering,
analysis of textures and very much more.
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